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SUMMARY

This is the fourth quarterly report on Contract NAS 3-6465 for the Develop-

ment and Evaluation of Magnetic and Ele=trical ]_v._ierials Capable of Oper-

ating in the Temperature Range from 800 to 160CJ_. Advanced space electric

power systems are the area of eventual applicatiic_

Program I is directed at developing high-temperatmre magnetic materials

with satisfactory strength for use in the solid rotoms of electrical generators.

Screening results, to date, conducted on martensi_Ac alloys, using additions

of tantalum plus tungsten and tantalum plus silicomito a base composition of
iron-15% nickel-25% cobalt, indicate that these all_ys show promise for meet-

ing the desired creep stress ( > 60,000 psi at 0.4 L_ercent creep strain), ar.d

magnetic saturation ( > 13 kilogauss) at ll00°F. Iin the 1200 to 1800°F range

where dispersion strengthening is applied to cobalt_and cobalt-iron base al-

loys, results show the saturation magnetization go:ml of 12 kilog_uss can be

met by the 27 cobalt-iron base alloys containing a_ ::much as 20 volume percent

dispersoid. No problem appears to exist in meeth_._g the goal of a coercive
force of less than 25 oersteds at 1200 to 1600°F in _:either the 2"/ cobalt-iron

base or cobalt base compositions. Creep tests on iNivco alloy at ll00°F are

now being conducted at pressures in the 3-5 x 10 -_ torr range at ll00°F. De-

sign analysis suggests creep strains in excess of c_ne percent should be run

above 1050°F. This will provide more reliable de_dgn data for rotors in in-

ductor alternators even though the design is based ,on only a total creep strain

of 0.4 percent because this represents the integrat_ed value of a wide range of

incremental creep strains.

Program II will determine the feasibility of high.t_mperature capacitors

using high-quality dielectric materials. Comparis_:on of electrical data on

boron nitride (boralloy), polycrystalline alumina 0Luca]ox), polycrystalline

beryllia, and single-crystal alumina (Linde sapphi_::e) show that pyrolytic

boron nitride has siznificafitly lower a-c losses, hitcher d-c resistance, and

emhibits less __ _,_"_ _ "_ .... ,_,..,_ ..... _....... _ ...... pac._a .... with +...... _....._ than any other material

investigated in the temperature range from room tmmperature to l l00°F. In

addition, the d-c breakdown stren_h of pyrolytic b_._ron nitride is 7000
v/rail at 1100°F which is several times greater tham that obtained for sap-

phire or beryllia.

Program I I I incorporates developments on alkali-_metal compatible ceramic-

to-metal seals and combinations of material desi&med into stator with a bore

sea!, a transformer, and a solenoid for investigati[ons of compatibility under
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electrical and magnetic stress at elevated temperature and m_der high vac-

uum. Ceramic outgassing Studies have indicated that the p--esent firing cycles

applied to a ceramic using a nitrogen-hydrogen _ tmosphere fo!lo¥.-edby the

vac.uum treatment which they undergo during brazing is sufficient for mini-

mizing oxygen bearing outgassing products. These would ad_l only a few ppm

of oxygen to the alkali-metal charge in a typical advanced electric power sys-

tem. The stator, transformer and solenoid which will provide data on a

stability of materials applied to typical electrical designs were installed in

the thermal vacuum chamber and stability testing was initiated at 1100°F hot-

spot temperature. The chamber pressures were approximately 4 x 10 -7 torr

at the beginning of the 5000-hour tests and have been decreasing. Minimum

cold chamber pressure obtained after system bake-out was 1 x 10-10 torr.
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SECTION I

INTROD UC TION

This is the fourth quarterly report on Contract NAS 3-6465 for the Develop-

ment and Evaluation of Magnetic and Electrical Materials Capable of Oper-

ating in the Temperature Range from 800 to 1600°F. The period of perform-

ance is from September i, 1965 through November 30, 1965. The program

consists of three Programs with their related tasks as follows:

Program I - Magnetic Materials for High-Temperature Operation

Task 1 - Optimized Precipitation Hardened Magnetic Materials

for Application in the i000 to 1200°F Range

Task 2

Task 3

Task 4

Investigation for Raising the Alpha to Gamma Transfor-

mation Temperature in Cobalt-Iron Alloys (completed)

Dispersion-Strengthened Magnetic Materials for Appli-

cation in the 1200 to 1600°F Range
|

Creep Testing

Program II - High-Temperature Capacitor Feasibility

Program III - Bore Seal Development and Combined Material Investi-

gation Under a Space Simulated Environment

Task 1 - Bore Seal Development

Task 2 - Stator and Bore Seal

Task 3 - Transformer

Task 4 - Solenoid

In Program I, limitations in magnetic material performance at elevated tem-

perature have been recognized from Contract NAS3-4162 and the development

of materials incorporating improved magnetic and mechanical properties is
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being pursued. In most cases, high-strength compromises the magnetic
properties; therefore, a balance between these two variables is sought.

Program I I is directed at determining the feasibility of applying high-quality

dielectric materials and their processes to a high-temperature (1100°F)

capacitor which is lightweight and suitable for static power conditioning

apparatus used in space applications.

Program III incorporates development on ceramic-to-metal seals and on

combinations of materials previously evaluated under Contract NAS 3-4162

into a stator with a bore seal, a transformer, and a solenoid for investiga-

tions of compatibility under electrical and msgnetic stress at elevated

temperature and high vacuum.

The three Programs will be reported consecutively in Sections If, III and

IV. Section II and Section IV are further divided into their respective

tasks. Each task is reported separately and includes a summary of technical

progress, a discussion, and the program for the next quarter so the reader

may obtain an understanding of each task.

The first, second, and third quarterly reports were issued as NASA-CR-

54354, N._.SA-CR-54355, and NASA-CR-54356 respectively. These reports

are extensively refei'enced in this report. Other references identified by

number in the discussion of each task are contained in Section V. These

are identified in Section V by the program and task for which the reference

is applicable.
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SECTION I I

-PROGRAM I - MAGNETIC MATERIALS FOR

HIGH- TEMPERATURE OPERATION
L

Program I is directed at improvement and furthering the technology of

magnetic materials suitable for application in the rotor of a generator or

motor in advanced space electric power systems.

Task 1 is concerned with precipitation-hardened magnetic materials in the

I000 to 1200°F range. These materials are of the iron-cobalt-nickel ternary

system. The two specific areas of interest are the iron and cobalt corners

of the ternary system.

Task 2 is a small research investigation for determining the feasibility of

raising the alpha to gamma transformation temperature in the iron-cobalt

system ; thereby increasing the useful magnetic temperature of this system.

This investigation is completed and the final results were given in the third

quarterly report. Selected alloy additions of 3 to 5 weight percent increased

the transformation temperature approximately 9°F (5°C) for each!weight per-

cent added. Magnetic saturation was lowered by each addition. If only a 45°F

increase in alpha to gamma trm_sformation temperature is desired, at a slight

sacrifice in magnetic saturation, several alloying agents are satisfactory.

Task 3 is directed at applying dispersion-strengthening mechanisms to

magnetic materials to achieve useful mechanical and magnetic properties

in the 1200 to 1600°F range. Because both variables are influenced

differently by particle size and spacing, a compromise is sought thereby

tailoring the materials to the need of dynamic electric machines.

Task 4 is a creep program on Nivco alloy (approximately 72 percent cobalt,
23 percent nickel and certain other elements) which will generate 5000 hour

design data in a vacuum environment (I x 10-5 tort or less). This material

represents a presently available magnetic material with the highest useful

application temperature for stressed applications.
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AI TASK 1 - OPTIMIZED PRECIPITATION-HARDENED MAGNETIC

MATERIALS FOR APPLICATION IN THE 1000 TO 1200°F RAN.GE

, Summary of Technical Progress

a) Thirty alloys have been tested in the screening program.

Twenty alloys were of the martensitic type and ten were

of the cobalt base type.

b) The alloys were melted by the levitation melting technique.

Dilatometer tests, magnetic saturation measurements and

aging tests with hardness and coercivity measurements and
microstructure observations were made.

.c) The test results indicate that some combinations of elements

such as tantalum plus tungsten and tantalum plus silicon to

a base composition of Fe-15Ni-25Co are promising.

Aluminum and aluminum plus titanium added to tantalum in

this base composition decreases the rate of hardness change

during aging and increases the maximum Vickers hardness

level. However, a much higher increase of coercivity was

obtained during aging.

The addition of silicon along with titanium to the Fe-15Ni-

25Co base composition kept the coercivity level below 25

oersteds even after 100 hours aging at 1022°F (550°C).

The basic composition Fe-5Ni-5Cr-25Co with addition of

tantalum behaved similar to Fe-15Ni-25Co with the additions

of tantalum during the aging tests.

d) In the cobalt base alloys, the beneficial effect of the addi-

tion of %antalum to the Co-Ni-Ti-A1 base was recognized.

The Vickers hardness was increased to a value of 411 which

is about twenty percent higher than that of Nivco alloy. The

magnetic saturation of the experimental alloy was about ten

percent lower than that of Nivco alloy.

2. Discussion

The objective of this program is to find and evaluate an alloy composition

which displays high-creep stren_h and useful ferromagnetic properties

at temperatures in the range of 1000 to 1200°F.
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The target ultimate tensile strength for the alloy at ll00°F is 125,000
psi or better. The target stress to produce 0.4 percent creep strain
in 1000 hours at ll00°F is 76,000 psi or greater. The 10, 000 hour
stress target at ll00°F is 80 to 90 percent of that at 1000 hours. The
target magnetic saturation for the developmental alloy is 13,000 gauss

or bitter at 1100°F and a coercive force less than 25 oersteds.

An alloy screening program is being conducted as the first step in

.attaining this goal. The purpose of the screening program is to find

a certain region of alloy composition where the combination of desir-

able mechanical and magnetic properties can be attained. Vickers

hardness tests, coercivity measurements, and saturatior_ measure-
ments after a suitable heat treatment and dilatometer tests were con-

ducted to provide pertinent data and to determine the thermal stability

of the alloy structure. Details of the test methods were reported in

the first and second quarterly reports.

a. EXPERIMENTAL PROCEDURE

Marte nsitic alloys I-A-33 to I-A-52 and cobalt-base alloys

1-B-32 to 1-B-41 were studied during this report period. The

nominal compositions of the two alloy series are shown in Tables

If-1 and II-2. The base composition Fe-15Ni-25Co was used

for alloys 1-A-33 to I-A-37 and 1-A-43 to 1-A-52.

The experimental results which were reported in the Second

quarterly report showed that precipitation hardening was obtained

in this base composition by the addition of the elements tantalum,

molybdenum, tungsten, titanium, or beryllium. The single addi-

tion of aluminum or silicon raised the alpha to gamma transform-

ation temperature. Chromium and vanadium are believed to reduce

the rate of diffusion in ferritic alloys. Combinations of these

elements were applied to the base composition for alloys 1-A-33

to 1-A-37 and 1-A-43 to 1-A-52. In alloys 1-A-38 to 1-A-42, the

nickel content was substantially decreased in order to determine

whether a matrix con*aining manganese or chromium with reduced

or no nickel content would produce a maraging strengthening res-

ponse when tantalum is added to cause precipitation.

The cobalt alloy compositions I-B-32 to l-B-41 were designed on

the basis of results which were reported in the third quarterly

report. Alloy 1-B-32 with titanium plus aluminum in a matrix of

15Ni-5Fe-bal Co was expected to give the best precipitation harden-

ing while avoiding any discontinuous precipitation. The other alloys

contained additional elements to obtain greater strength.



TABLE Ii-I.

Alloy
Number

1-A-33

I-A-34

1-A-35
I-A-36

1-A-37

1-A-38
1-A-39
I-A-40

I-A-41

I-A-42 "

I-A-43

1-A-44

1-A-45

1-A-46

1-A-47

1-A-48

1-A-49

1-A-50

1-A-51

1-A-52

Com _osition of Martensitic Alloys I-A-33 to I-A-52

Nominal ,alloy Composition
(weight percent)

54.4Fe-15Ni-25Co-0.5Be-5Ta-0.1Mn
53.9Fe-15Ni-25Co-1W-5Ta-0.1Mn

54.4Fe-15Ni-25Co-0.5AI-5Ta-0.1Mn

53.9Fe-15Ni-25Co-0.5A1-0.5Ti-5Ta-0.1Mn

53.9Fe-15Ni- 25Co-0.5AI-0.5Ti-2Mo-3Ta-0.1Mn
69.9Fe-25Co-5Ta-0. IMn

64.9Fe-5Ni-25Co-5Ta-0.1Mn

62Fe-5Ni-25Co-3Mn-5Ta

66Fe-25Co-4Mn-5Ta

59.9Fe-5Ni-25Co- 5Cr-5Ta-0.1Mn

55Fe- 15Ni-2 5Co-2Mo-3Ta

53Fe- 15Ni-2 5Co-2Cr-5Ta

57.5Fe-15Ni-25Co-2Cr-0.5Be

56Fe- 15Ni-2 5C o-2C r- 2Si

53Fe -15Ni -25C o-2V- 5Ta

53Fe- 15Ni-25Co-2Si-5Ta

56Fe- 15Ni-2 5Co-2Si-2W
57Fe- 15Ni-25Co- ISi-2V

59Fe- 15Ni-25Co- 1Si- 1Ti

56Fe- 15Ni-2 5Co-2Mo-2W

TABLE II-2. Composition of Cobalt-Base Alloys I-B-32 to I-B-41

Alloy
Number

1-B-32
1-B-33

1-B-34

1-B-35
1-B-36

1-B-37

1-B-38

1-B-39

1-B-40

l-B-41

Nominal Alloy Composition
(weight percent)

75.8Co-15Ni-5Fe-2.2Ti-i

70.8Co-15Ni-5Fe-2.2Ti-I

70.8Co-15Ni-5Fe-2.2Ti-1

73.8Co-15Ni-5Fe-2.2Ti-1

75.3Co-15Ni-5Fe-2.2Ti-1
70.8Co-I 5Ni-5Fe-2.2Ti-1

70.8Co-15Ni-5Fe-2.2Ti-1

70.8Co-15Ni-5Fe-2.2Ti-1

70.8Co-15Ni-5Fe-2.2Ti-1

70.8Co-15Ni-5Fe-2.2Ti-1

•5AI-0.

•5AI-0.

•5AI-0.

•5AI-0.
•5AI-0.

•5AI-0.

•5AI-0.

•5AI-0.

.5A1-0.

•5AI-0.

5Zr

5Zr-5Cu

5Zr-5Mn

5Zr-2Si

5Zr-0.5Be
5Zr-5Cr

5Zr-5W

5Zr-5Ta

5Zr-5Mo
5Zr-5V
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In order to melt the alloys bv the levitation melting technique,
smalI compactions of 20 grams were made as described in the

second quarterly report. In most cases, smalI chips and sIugs

of the pure metals were compacted together to form the alloy

during meIting. The small chips or slugs of the added elements
were carefulIy wrapped in nickel or cobait foii and then inserted

in the middle of the compaction. The reciting and pouring was

done in a high-purity argon atmosphere at slightly reduced pres-
sure.

The specimens for saturation measurements (1/10 inch long,

1/10 inch diameter ~ 0.1 gram) were machined from the tapered,

bar-shaped ingots. The dilatometer specimens (1 inch long, 1/'4
inch diameter) for the martensitic alloys and the round bars of

.similar dimension for the cobalt base aIloys were also machined
from the cast ingots.

The details of measuring magnetic saturation and determining the

transformation temperatures were described in the first quarterly

report.. A description of the hardness tests and coercivity meas-

urements were also included. The round samples were rolled

down to small strips of _ 95 mil thickness prior to the aging
treatments. The martensitic specimens were annealed for one

hour at 1832 to 1922°F (1000 to 1050°C) in argon flushed tube

furnaces, then quenched in oil. The cobalt-base alloys were

annealed for one hour at 2012°F (1100°C), then quenched in oil.
Before cold roiling, the martensitic alloys were warmed to about

200°F for 30 seconds. Cold rolling was done in the manner des-

scribed in the second quarter!y report.

Samples of the martensitic alloys 1-A-39, l-A-40 and l-A-41

broke during cold roiling. Alloys 1-A-33, 1-A-38, 1-A-42 and

1-A-48 developed a few cracks. All other samples including the
cobalt-base alloys were roiled down successfully.

After cold roiling, the samples underwent a schedule of heat

treatments as outlined in the flow chart on page 19 of the second

quarterly report. After annealing at 1832°F (1000*C) in an argon
flushed tube furr..ace, the samples were aged for one hour in salt

baths at temperatures successively increased in steps of 90°F

(500C) to obtain tile isochronal curve of property change at different
temperatures.
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After a homogenization treatment, which consisted of two anneals

and a slight (5%) deformation between anneals, an isothermal aging

treatment was applied at a temperature near that which resulted

in the maximum value of hardness determined from the isochronal

aging treatment. In the case of the martensitic alloys, the iso-

thermal aging temperature was 1022°F (550°C). In the case of

the cobalt-base alloys, the temperature was 1292°F (700°C). How-

ever, measurements of property changes such as hardness and

coercivity were made at room temperature, thus causing an in-

terruption in the aging treatment. The aging techniques were dis-

cussed in detail in the second quarterly report.

Samples for optical metallography were prepared in the manner

described in the second quarterly report. The martensitic alloys

.were mechanically polished, then electrolytically etched in a i0

percent solution of chromic acid. The cobalt alloys were etched

at 104°F in a solution of 20 parts HCI and 40 parts HNO 3 in 60

parts of glycerin. Electron micrescopy studies of alloys I-A-26,

I-A-27, and I-A-28 are in progress.

b. RESULTS

(1): Workability

Difficulties were encountered in a few cases during cold

rolling of martensitic alloy samples with reduced nickel

content. Further investigation of alloys I-A-39, I-A-40,

and l-A-41were discontinued. A contributing cause may

be that a second phase is formed during solidification of

the alloy, as observed in alloy I-A-42, making rolling more

difficult. The addition of beryllium, tungsten, and silicon,

when suitably combined with other elements, did not result

in problems during cold rolling, although some care must

be applied.

(2) Dilatometer Tests

The transformation temperatures of alloy samples 1-A-33

to I-A-52 as determined by dilatometer tests, are shown

in Table II-3. One test was made at a high cooling and

heating rate of 90°F./min (50°C/win) and another test was

made at a slow heating rate of !. 8 to 3.6°F/win (i to

2°C/min) and a slow cooling rate of 9°F/'min (5°C/min).



TABLE II-3. Transformation Temperature of Martensitic Alloys
" 1-A-33 to 1-A-52

Alloy
Number

1-A-33

1-A-34
1:A-35

1-A-36
1-A-37

1-A-38
1-A-39

l-A-40
l-A-41
1-A-42

1-A-43

1-A-44
1-A-45

I-A-46
1-A-47

1-A-48
1-A-49
l-A-50

l-A-51
1-A =52

Alloy
Number

1-A-33
1-A-34

1-A-35
1-A-36

1-A -37
1-A -38

1-A-39
l-A-40

_¢ AI
1 -_'-_ -'z A

1-A-42
1-A-43

1-A -44
1-A -45

1-A -46
1 -A -47

I-A -48
1-A -49
1-A -50

l-A-51
1-A -52

Nominal Alloy Composition
(weight percent)

54.4Fe-15Ni-25Co-0.5Be-5Ta-0. IMn
53.9Fe- 15Ni-25Co-IW-5Ta-0.1Mn

54.4Fe-15Ni-25Co-0.5AI-STa-0.1Mu

53.9Fe-15Ni-25Co-0.5A1-0.5Ti-5Ta-0.1Mn
53.9Fe-15Ni-25Co-0.5A1-0.5Ti-2Mo-3Ta-0.1Mn
69.9Fe-25Co-5Ta-0.1Mn

64.9 Fe-5Ni-25Co-STa-0.1Mn
62Fe-5Ni -25Co-3Mn-5Ta

66Fe-25Co-4Mn-5Ta
59.9Fe-5Ni-25Co-5Cr-STa-0.1Mn
55Fe-15Ni-25Co-2Mo-3Ta
53Fe-15Ni -25Co-2Cr- 5Ta

57.5Fe- 15_h-25Co-2C r-0.5Be
56 Fe- 15Ni-25Co-2Cr-2Si

53Fe-15Ni -25Co-2V-5Ta
53Fe-15Ni-25Co-2Si-5Ta

56 re-15Ni-25Co-2Si-2W
57Fe-15Ni -25Co-lSi-2V

58Fe-15Ni-25Co-1Si- 1Ti
56Fe -15Ni -25Co-2Mo-2W

Nominal Alloy Composition
(weight percent)

54.4Fe-15Ni-25Co-0.5Be-5Ta-0. IMn
53.9 Fe-15NI-25Co-IW-5Ta-0. IMn

54.4Fe-15Ni-25Co-0.5A1-5Ta-0.1Mn

53.9Fe-15Ni-25Co-0.5A1-0.5Ti-5Ta-0. IMa

53.9Fe- 15Ni-25Co-0.5A1-0.5Ti-2Mo-3Ta-O. 1Mn

90°F/Min
(°f)

1472-1617
1566-1668

1485-1607
1485-1600

1438-1593

1764-1780
1659-1740

1584-1706
1622-1735

1530-1681
1411-1578

1425-1584
1521-1652

1490-1609
1551-1652
1569-1652

1503-1652
1459-1652

1528-1652
1404-1526

90°F Min

(°F)

720-509

721-487
786-527

748-475

671-369

Transformation On Heating
Q = -!f

I 50-_C. lviin 3.6°F/Mih ](°C) (°F)

800-881

852-909
807-875

807-871

781-867
962-971
904-949

862-930
884-946

832-916
766-859

774-882

827-900
810-876
844-900
854-900

817-900
793-900

831-900
762-830

1292.-1553

1260-1542
1270-1542

1292-1539

1256-1553
1740-1764

1517-1717

1292-1645
1416-1699

1222-1589
1222-1535

1112-1485
1069-1398

1041-1420
1222-1508

1265-1521
1218-1472
1337-1499

1308-1615

1175-1472

7

50_C Min

(_C)

Transformation On Cooling

9_C _lin

(°r)

383-265

383-253
419-275

398-246
355-187

786-545
774-597

799-667

748-536

673-430
1726-1713

1351-1218
1155-972

1330-1166
937-752

747-518
622-392

622-378
649-351

705-478
766-597
752-509
775-545

894-709

743-572

2°C/Min

(_)"

703-845
682-839

688-839
700-837

680-845

949-962
825-936
700-896
769-926

661-865

661-835
600-807

576-759
560-771

661-820
685-827

659-800
725-815

709-880
635-800

5°C/Mia

(°c)

419-285
412-314

426-353

398-280
356-221

69.9Fe-25Co-5Ta-0.1Mn
64.9Fe-5Ni-25Co-STa-O. l_In

62Fe-SNi-25Co-3Ma_5Ta
uu_r _ - _.D_.,,U-"I,'v/D.- O I a

59.9Fe-5Ni-25Co-5Cr-5Ta-0. IMn
55Fe -15Ni -25Co-2Mo -3Ta

53Fe-iSNi-25Co-2Cr_5Ta
57.5Fe-15Ni-25Co-2C r-0.5Be
56 Fe- 15Ni-25Co-2C r-2S_

53Fe-15Ni-25Co_2V_STa

53Fe-15Ni-25C__2St_STa
55Fe-15Ni-25Co-2Si-2W

57Fe-15Ni-25Co_ISi_2V

58Fe- 15Ni-25Co- iSi-iTi
56 Fe -15Ni -25Co -2Mo -2W

1587-1521

1227-1972

1053-837
1231-1053

833-640

712-475

622-306
675-448

619-345
693-369
734-_
727-4a2
705-437

837-572

721-558

864-827

664-578
567-447

666-567
445-338

373-246

328-152
357-231

326-174
367-187
390-246

386-250
374-225

447-300

353-292

941-934
733-659

624-522

721-630
503-400

397-270
328-200

328-192
343-177

374-248

408-314
400-265

413-285
479-376

395-300
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The beginning and enJ of a noticeable deviaticn in the s]ope

of the thermal expansion curves are listed in Table II-_

as the beginning and end of transformation.

During slow heating of the martensitic alloys, the trans-

formation into At started at or below 1112°F (600°C) in

alloys I-A-44, 1-A-45, and I-A-46 only, which proved

again the detrimental effect of chromium addition on the

stability of the ferromagnetic _ phase even when added in

combination with other elements. Except for alloy I-A-52

which contained molybdenum plus tungsten, all other alloys

started to transform above 1202°F (650°C). In the alloys

with reduced nickel content, 1-A-38 to 1-A-41, and in alloys

I-A-33, I-A-36, I-A-50, and I-A-51, the beginning of trans-

formation was observed at 1292°F (700°C) or even higher.

Alloys I-A-33, I-A-36, I-A-59, and 1-A-51 illustrate the stabi-

lizing effect of beryllium apd silicon, and the combination

of Al+Ti+Ta on the a phase.

The transformation temperatures measured during cool-

ing showed that the transformation started well above

III2°F (600°C) only in alloys I-A-38 to I-A-41. Martensite

formation and strengthening cannot be expected during cool-

ing in the alloys with five percent nickel or less except

when 5 percent chromium is added.

(3) Saturation Measurements

The results of the saturation measurements are listed in

Tables II-4 and II-5. The values after annealing, meas-

ured at room temperature, are listed in the third column.

The values after aging, measured at room temperature and

at III2°F (600°C), are listed in the fourth and fifth columns.

The marteI1sitic alloys had been annealed one hour at 1832°F

..... °- (6 .(1000=C) and ,_ed one hour at ii±2 r 00°C) The cobalt-

base alloys were annealed one hour at 2012°F (II00°C) and

aged one hour at 1292°F (700°C).

The values in the tables were measured as saturation

magnetic luoment per gram in cgs units (_). This value

may be converted to the approximate saturation in gauss

by the equation:

!0



I- Alloy

Number

1-A-33

1-A-34
1-A-35

I-A-36

1 -A-37

1-A-38

I-A-39

1-A-40

1-A-41
1-A-42

I-A-43

I-A-44
I-A-45

I-A-46

1-A-47

I-A-48

I-A-49
1-A-S0

I-A-51

I-A-52

TABLE II-4,

Nominal Alloy Composition

Saturation Magnetic Moment of Martensitic Alloys
1-A-33 to 1-A-52

SATURATION MAGNETIC MOMENT (emu/g) (a)

After AnneaLm_
One Hour at ARer Aging One Hour

832OF(1000_C) at 1112°F :(600_C)
ested _t Room Tested at .Room Tested at

(weight percent)

54.4Fe-15Ni-25Co-0.5Be-5Ta-0. IMn

53.9Fe-15Ni-25Co-IW- 5Ta-0. IMn

54.4FE-15Ni-25Co-0.5AI-STa-0.1Mn

53.9Fe-ISNi-25Co-0..5 A]-0.5Ti-STa-0. IMn

53.OFe-15Ni-25Co-0.5At-0.5Ti-2Mo-3Ta-

0.1Mn

69,9Fe-25Co-STa-0.1Mn
64.9Fe,-SNi-25Co- 5Ta-0.1Mn

62Fe-5N1-25Co-3Mn-STa

66Fe-25Co-4Mn-STa

59.9Fe- 5Ni-25Co-SCr-STa-0.1Mn
55Fe-15Ni-25Co-2Mo-3T_

53 Fe- 15Ni-25Co-2Cr-STa

57.5Fe-15Ni-25Co-2Cr-0.5Be
56Fe- 15Ni-25Co-2Cr-2Si

53Fe- 15Ni-25Co'2V- 5Ta

53Fe- 15Ni-25Co-2Si-STa

56Fe- 15Ni-25Co-2Si-2W

57Fe- 15Ni-25Co-ISi-2V
58Fe- 15Ni-25Co-ISi-1Ti

5fiFe- 15Ni-25Co-2Mo-2W

Temperature

191

192

193

188

187
222

215

212

211

190
194

184

198

190
186

186

182

196
2O4

198

Temperature

193

193

194

189

186
221

214

209

213
192

192
176

190

177

185
190

181

192

2O6

197

1112°F(600_C)

160

156

161

156

150

192
182

171

174

152

147
122

137

119

145

147

129
133

166

14.3

(a) To convert saturation magnetic moment to the approximate induction in gauss, multiply the listed

value by I00.

TABLE II-5. Saturation Magnetic Moment of Cobalt-Base A11oys
1-B-32 to 1-B-41

Alloy

Number

I-B-32

I-B-33
I-B-34

I-B-35

I -B-36

I-B-37

I-B-38

I-B-39
I-B-40

I-B-41

Nominal Alloy Composition

(weight percent)

75.8Co-15Ni-5Fe-2.2Ti-l. 5AI-0.5Zr

70.8Co-15Ni-5Fe-2.2Ti-I. 5AI-0.5Zr-SCu

70.8Co-15.x;i-SFe-2.2Ti-l. 5A!-0.5Zr-SMn
73.8Co- 15N'i-5Fe-2,2Ti -I. 5AI-0.5Zr-2Si

75.3Co-15Ni-SFe-2.2Ti-l. 5AI-0.5Zr-0.5Be

70.8Co-15N_.-SFe-2.2Ti-1.5A!-0.5Zr-SCr

70.8Co-15Ni-SFe-2.2T£-h 5AI-0.5Zr-SW

70.8Co- 15N_-5Fe-2.2Ti-i. 5kl-0.5Zr-STR

70.8Co-ISNi-SFe-2.2Ti-l. 5AI-0.5Zr-5),io

70.8Co-15Ni-SFe-2.2Ti*l. 5AI-0.5Zr-SV

SATURATION :,[AGNETIC MOlVE_.N_. (emu/g) (a)

"'After Annealing

One Hour at After Aging One Hour

_ 2012°F(1100_C) at.1292°F(700°C)
Tested at Room

Temperature

133

124

122

120

128
99

117

116
II0

103

Tested at Room

Temperature

132

125

122

118
128

99

115

116

107

97

Tested at

1112°F(600°C)

103

93
65

79
97

32

84

9O

70

62

(a) To convert saturation magnetic moment to the approximate induction in gauss, multiply the listed

va_.ue by If0.

" 11



B s = 4=_¢

where:

= density in g/cm3

= saturation magnetic moment, emu/g

In this report, the value 100 was used as the product of

4 _r 6 for the martensitic alloys. In the case of the higher

density cobalt alloys, the value 110 was used for 47r_.

The martensitic alloy 1-A-38, containing no nickel, showed

the highest value of magnetic saturation. In general, all
of the alloys with five percent nickel showed higher values

of magnetic saturation than the alloys with 15 percent nickel.

However, the saturation value of alloy 1-A-42 with five

percent nickel plus five percent chromium is approximately
the same as some of the better alloys containing 15 percent
nickel. The magnetic saturation of all of the 15 percent

nickel alloys studied here is io_'er than that of the simple

ternary alloy Fe-15Ni-25Co. (See the first quarterly

rep0rt.) The (Fe-15Ni-25Co plus x-x) alloys may be cate-
gorized according to measured saturation values at ll12°F

(600°C). B s =>15,000 gauss v_as attained in exper, imental

alloys 1-A-33, 1-A-34, 1-A-35, 1-A-36, 1-A-37, and
l-A-51. B s < 13,000 gauss (the value attained in commer-

cial alloys H-11 and 15% nickeI maraging steel) was obtained

in experimental alloys 1-A-44, 1-A-45, 1-A-46, 1-A-49,
and l-A-50. This data reflects the deleterious effect of

chromium and silicon on magnetic saturation when they
are combined with tungsten or vanadium.

Only the cobalt-base alloy 1-B-32 showed a value of mag-

netic saturation slightly better than that of Nivco alloy (see

second qua_vterly report). All of the other cobalt-base alloys
studied which contained additional elements had values of

magnetic saturation at 1112°F (_00°C) below Bs = 11,000

gauss. The addition of 0.5 weight percent of beryllium,
five percent copper and five percent tantalum had the least

effect on saturation; depressin_ the value at ll12°F (600°C)
by less than 10 percent.

12 "



(4) Aging Tests

The isochronal curves of the experimental alloys were

plotted showing Vickers pyramid hardness and coercivity

at a constant aging time of one hour and at aging temper-

ature increasing in increments of 90°F (50°C).

Figures II-I to II-5 depict the isochronal curves for the

experimental martensitic alloys, with the exception of

alloys 1-A-39 to 1-A-41, which broke during rolling. The

maximum values of room temperature hardness which were

measured during this aging program are listed in Table II-6

together with the aging temperature where maximum hard-

ness was obtained. The room temperature coercivity is

listed for the same aging temperature.

The isochronal aging tests show that considerable strength-

ening occurred in all of the martensitic alloys with one

exception, alloy I-A-38, which did not undergo a marten-

sitic transformation (Figure II-3). If the alloys are listed

according to the value of maximum hardness, alloys I-A-33

with 810 VHN and I-A-45 with 757 VHN top the list; indicat-

ing that beryllium is a strong precipitation hardening element.

It appears more useful to list the alloys according to the

aging temperature where the maximum hardness is attained.

It is desirable that this temperature be as high as possible

for anticipated creep strength. It is also desirable that the

coercivity associated with the maximum hard.less be moder-

ate. The alloys which attained maximum hardness at i022°F

(550°C) and have room temperature coercivity values less

than 35 oersteds may be listed as follows: I-A-34, I-A-35,

I-A-36, I-A-37, I-A-43, I-A-47, and I-A-48. The room

temperature hardness maximums are between 640 VHN and 695

VHN and the associated coercivity values are between 30 and

35 oersteds. All of these alloys contain tantalum combined
with _ _ _'_

ou,_r _d_or, o (see _._-'^ II-6). :_.

The results of the isochronal aging tests of the cobalt-base

alloys I-B-32 to I-B-41 are plotted in Figures II-6 to II-8.

The maximum values of hardness which were obtained by

isochronal aging are listed in Table II-7 together xvith the

temperature at which the maximum value was obtained.

The coercivity at this temperature is also listed for each

alloy.
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The isochronal change of hardness in the cobalt-base alloys

indicates an increase of hardness during aging. The increase

of hardness in the alloy 1-B-34 is less than that in alloy 1-B-32

indicating that the manganese addition acts as a softener.

Maximum hardness is increased in all of the other alloys by

the extra eiements as compared to alloy 1-B-32. The elements

silicon, chromium, tungsten, molybdenum, vanadium and, in

particular, tantalum show a substantial increase of hardness,

even after cooling from the homogenization treatment, indi-

cating that these elements act as solid solution hardening

elements. If one considers only those alloys in which a maxi-

mum hardness well above 300 VHN is reached, the list in-

cludes alloys 1-B-36, 1-B-38, 1-B-39 and l-B-40. The

hardness maximum of 1-B-36, however, is associated with

a very high coercive force. One should, therefore, rule out

the addition of beryllium as a useful hardener. The highest

value is obtained in the alloy 1-B-39 with 383 VHN at an aging

temperature of 1382°F (750°C) indicating that tantalum is

the most potent hardener in these alloys.

Isothermal aging tests were conducted at 1022°F (550°C) on

the martensitic alloys except for alloy 1-A-38 and alloys

1-A-39 to l-A-41 which did not show age hardening during

the isochronal aging test. The change in hardness and

coercivity for the martensitic alloys during isothermal aging

are plotted in Figlares II-9 to II-16.

These tests show that the properties of most of the martens-

itic alloys do not change substantially during aging at 1022°F
(550°C). However, a rather strong increase of coercivity

was observed in the alloys 1-A-35, 1-A-36, 1-A-37, 1-A-43,

1-A-44 and 1-A-47. This indicates that aluminum, chromium

and, under certain circumstances, vanadium have an adverse

effect on coercivity. A decrease in hardness of more than

20 percent was observed only in 1-A-45 during aging of 100

hours. The hardness remained constant (within 5 percent)

in the alloys 1-A-35, I-A-36 and 1-A-37. However, these

three alloys showed a strong increase of coercivity during
aging. If one allows a 10 percent decrease in hardness and

an increase in coercivity of less than five oersteds, but with

absolute values still below 35 oersteds, the alloys 1-A-34,

1-A-42, 1-A-48, 1-A-49, l-A-50, and 1-A-52 qualify.
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The aging tests of the martensitic alloys would then suggest

the alloys 1-A-34 (53.9Fe-15Ni-25Co-lW-5Ta-0.1Mn) and

I-A-48 (53Fe-15Ni-25Co-2Si-5Ta) as the most promising.

Table II-3 shows the a to _ transformation temperature

of these alloys to be above 1202°F (650°C).

The results of the 1292°F (700°C) isothermal aging tests

of the cobalt-base alloys are plotted in Figures I I-17 to
II-21. Alloy 1-B-34 was not tested because of the small

increase in hardness exhibited during isochronal aging.

These tests iadicate that both hardness and coercivity in-
creased during aging at 1292°F (700°C). Less than 20 per-

cent increase in hardness was exhibited by the cobalt-base
alloys during 100 hours aging. The greatest increase in

coercivity was observed in alloy 1-B-36. Nearly all alloys
showed a coercivity value near five oersteds after one hour

at 1292°F (700°C). An increase of less than 20 oersteds

was apparent in alloys 1-B-32, 1-B-37, 1-B-38, and 1-B-39

after 100 hours aging at 1292°F (700°C). Of these alloys,
only 1-B-38 and 1-B-39 attained a hardness value in excess

of 300 VHN. Therefore, it appears that only alloys 1-B-38
(70.8Co- 15Ni-SFe-2.2Ti-1.5A1-0.5Zr-5W) and 1-B-39

(70.8Co-15Ni-5Fe-2.2Ti- 1.5A1-0.5Zr-5W-5Ta) may be use-

ful candidates for stable high-temperature cobalt-base

magnetic alloys.

(5) Microstructure

Figures II-22 to II-37 show the light micrographs of the

structure of the martensitic alloys after aging for 100 hours
at 1022°F (550°C).

Alloy 1-A-42 contains particles of a second phase which

may have'originated during solidification.

A net_.vork of grain boundary precipitate, which may have
precipitated along the boundaries when the steel was still

austenitic, can be recognized in alloys 1-A-34, 1-A-37,
1-A-44, 1-A-45, 1-A-46, 1-A-49, l-A-50 and l-A-51.

The alloys 1-A-42, 1-A-47, 1-A-48, l-A-51, and 1-A-52
showed a very sWong attack by the etching solution indi-

cating the presence of a second phase. The attack by the

etching solution in the alloys 1-A-35, 1-A-36, 1-A-37, and

1-A-44 was rather light. Alloys 1-A-38 to l-A-41, which
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FIGURE II-22. Microstructure of Alloy I-A-33 (54.4Fe-15Ni-25Co-
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FIGURE I I- 2 4. Microstructure of Alloy 1-A-35 (54.4Fe- 15Ni-25Co-

0.5Al-5Ta-0.1Mn) After 100 Hours Aging at

1022°F (550°C) 500 X
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FIGURE II-27. Microstructure of Alloy I-A-42 (59.9Fe-5Ni-25Co-5Cr-
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FIGURE II-28. Microstructure of Alloy I-A-43 (55Fe-15Ni-25Co-2Mo-3Ta)
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FIGURE II-29. Microstructure of Alloy 1-A-44 (53Fe-15Ni-25Co-2Cr-5Ta)

After 100 Hours ._4i._ at 1022°F (550°C) 500 X

46



.... " " ..... -i. --.- r.. .j, .- _p-o_o. ".- L. _]¢° "':"
_.l- :.'-."_: o its, _ ..¢'.- . _ - _., • . . : _... . ,. >. _ ,_ "-_ :'_1¢ , . .
• _" 'f -_ _'_" " -" " "r." ''_ "','_'- " - "" '" "."'" _-.- " -' _/" '-"

_,":-_ -" "_'.'_.'" _'"_ ",,'-7: . _:: _" "'_'.'2: ":"-".- " ". : -,1":- "':" • " ' " ;_ .." "2"..... . . . . . . . ._. -...; -., ...? .. , -." .,,-.. ,;,'.:._... .--.,,.. ,...:" ¢'7 : . -.. _llc.'_..;..,"
-," -": '- • "-.;" ".,', -)-_T _- ._ :'" ' '_"...:.'" .. ,_ "" . -".j<:,"_.' :.t" ."-_" _-?,1_.,'o. '.: ' ".

,';--. ...... .'. .... : ' , • • • _, ..'_. ....... - ..... " _-_Z;_:..".,,:41_.- .-.,
•_,•. -:,_ .--=-o-_- .,... "-_ .-..... .. _: :_ ".--./.'r- -l:. , ....,,,.--v:" .-_

• "a . ... :.., -, , : ";:_:. • *:.. :,_...-, , ..... ; ,',,_, "r:...:._" ,?.-. :'_'.-,.: ;...., 2.., .
• "' ?.i

',.-.,-5_:'--'." ---I: ' :,'.,. .... >-.-..---_:-<,_';_'-_',.:,<'-'=';._ :..+:'._' : : - , .,._._:-. - --.7,
"--_." d_."_'- , '--':--: ','-: ":- ':'7/.'_ " "-" ;'" " ",' '_.'_;",_:" "....":rg"_;;,':. "'_ " ._-.:.z _ .;r ._.--,_Ji 20

" • .. ..'_-. -' ..: -_;¢',."_.7- , -, ..,._." " ": _'_'- . ---,.'* -- ' -': 10
".: -;;'._':- _:.,_' ;: '_I_,;:. , ' , ,"-:.r#:' ., :.;,"_?_::-:'." " .::"+.. - "
•_;;;:,; _-::-" ..__:, ;_:.: 2_r¢_:i'_. _-,;<.r_:_,,._,--'_,':2 . "_:'.':-.-::-"'-.:'..:'"'.L _." .,. 0
"._ _" . - -.5 • -'t;'_,_,._ -° _'. _: -' ' - ' " " _ +*'_ "_'_2 " .-;-_ '- " ';- _ - .- .. - a * _ " " r,

.- 7, %_.:.=_ ; ._:_._ -, <:7;.;_. ::,,_, ;j; _..:..,. ?._-.? ; .....:_. ,.,,.. ..... ,. _..:_. . ... Microns
" ..'- .: _..'_-' " , _,v-f: . _ _:._c/-;_..._ .,. • .... ; ; ; • ;.:_.--_'t',,°-._-'-._.,'., ": --:.-..-; • ' - _. -" --

" " "" "" ' _:_:_"."_"" ": I _-,''"" _}_-,_t"_-..";.:.-.--. " . "-- :_ '_'.-

-._.; ', _!_2,_• . . ,..<- '" _:_"-_": _• "-3:"...:. : ,,'.'-" - ; " _;,;._: -'_W._v<_',';,:'.
; .._2_.......... .-_,.. . _....- , - 1 _ t ....... _-, -_:,, • .. • " -- , :.-

_. . ..,i_/_, .* :', " _ i _. ." . . _+" ".'_ • ." " ¢'_"._" • ".. " ", : , :_.°

"_g ...... ' • .'.".'- ._./_ "." ,..:' :,;'- 3. -.'_:" ,'_g*-' < .:'.':. "_-_a:--;',"_°. ,
I_. • ,: ,i_.'." .._ W, i; '"."_-', "_. ' " :_',,"]'f'" .:." _ -'o_ .'.'•" +--'-._..

Electrolytically etched in !0 percent chromic acid.

FIGURE II-30. Microstructure of Alloy 1-A-45 (57.5Fe-15Ni-25Co-

2Cr-0.5Be) After 100 Hours Aging at 1022°F (550°C) 500X
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Electrolyiically etched in I0 percent chromic acid.

FIGURE II-32. Microstructure of Alloy 1-A-47 (53Fe-15Ni-25Co-2V-5Ta)

After 100 Hours Aging at 1022°F (550°C)500 X
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Electrolytically etched in 10 percent chromic acid.

FIGURE I I- 33. Microstructure of Alloy 1-A-48 (53Fe- 15Ni-25Co-2Si-5Ta)
After 100 Hours Aging at 1022°F (550°C)500 X
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Electrolytically etched in I0 percent chromic acid.

FIGURE II-34. Microstructure of Alloy I-A-49 (56Fe-15Ni-25Co-2Si-2W)

After I00 Hours Aging at I022°F (550°C) 500 X
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Electrolytically etched in 10 percent chromic acid.

FIGURE II-35. Microstructure of Alloy l-A-50 (57Fe-15Ni-25Co-lSi-2V)

After 100 Hours Aging at 1022°F (550°C) 500 X
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Electrolytically etched in 10 percent chromic acid.

FIGURE II-36. Microstructure of Alloy 1-A-51 (58Fe-15Ni-25Co-1Si-1Ti)

After 10G Hours Aging at 1022°F (550°C) 500 X

53



2O
I0

0

Microns

Electrolytically etched in I0 percent chromic acid.

FIGURE II-37. MicrosLructure of Alloy I-A-52 (56Fe-15Ni-25Co-2Mo-2W)

After I00 Hours Aging at I022°F (550°C) 500 X
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The observation of the microstructure of martensitic

alloys indicates no correlation to the measured physical

properties. One would expect that the metals which showed

a strongly etched structure would also have high values of

coercivity. However, this is true for I-A-47 only. One

can, however, conclude that the observed grain boundary

precipitate may have an adverse effect on creep strength.

Therefore, one should apply some caution in this respect

if alloy I-A-34 is considered a candidate material for a

creep resistant alloy based on the results of the aging
tests.

Figures II-38 to II-46 show the microstructure of the

cobalt-base alloys. The presence of small particles of

a second phase can be seen in all of the alloys. These

particles may have originated during solidification. In

the alloys 1-B-32, 1-B-33, 1-B-35, 1-B-36 and 1-B-39,

a fine grain boundary precipitate can be observed. In alloy

1-B-38, one can recognize the start of discontinuous pre-

cipitation. About one percent of the structure contains

grain boundary seams with discontinuous precipitate. Pre-

cipitate within the grains can be observed in alloys 1-B-35

and 1-B-36. The coloring of the grain faces in l-B-40

and l-B-41 may point to the existence of submicroscopic
precipitate.

It is easier to correlate the observations of the micro-

structure of the cobalt-base alloys with the measured prop-

erties. The high value of coercivity of alloy 1-B-36 after

100 hours aging at 1292°F (700°C) can be associated with the

very fine precipitate seen in the light micrograph of this

alloy. Evidence of precipitate may also be recognized in

the light m'icrographs of alloys 1-B-35, l-B-40 and 1-B-41

as indicated above. In these alloys, the coercive force was
also higher than 20 oersteds.

c. CONC LUSIONS

In the martensitic alloys, alloys 1-A-34 and 1-A-48 appear

to be promising candidate materials for creep resistant alloys

according to the aging tests. The stability of the a phase was

sufficient as measured by the dilatometer tests. The mag-

netic test data at ll12°F (690°C) show that magnetic satura-

t_u,, was quiLe gooc_ for a_!oy l-._-ao with B_ a little less than

15,000 gauss: for !-A-34, B s is above .15,500 gauss.
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FIGURE II-38. Microstructure of Alloy I-B-32 (75• 8Co-15Ni-5Fe-2.2Ti-

i. 5Al-0.5 Zr) After i00 Hours Aging at 1292°F (700°C) 500 X
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Etchant: 20 ml HC1, 40 ml HNO3, 60 ml glycerin

FIGURE I I- 39. Microstructure of Alloy 1-B-33 (70• 8Co-15Ni-5Fe-2.2Ti-
1.5A1-0.5 Zr-5Cu) After 100 Hours Aging at

1292°F (700°C) 500 X
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Etchant: 20 ml HCl, 40 ml HNO3, 60 ml glycerin

Note extensive precipitate within grains•

FIGURE I I- 40.
o

Microstructure of Alloy 1-B-35 (73.8Co- 15Ni-5Fe-2.2Ti-

1.5A1-0.5 Zr-2Si) After 100 Hours Aging at

1292°F (700°C) 500 X
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Etchant: 20 ml HC1, 40 ml HNO3, 60 ml glycerin

Note extensive precipitate within grains.

FIGURE II-41. Microstructure of Alloy 1-B-36 (75.3Co- 15Ni-5 Fe-2.2Ti-

1.5Al-0.5 Zr-0.5Be) After 100 Hours Aging at

1292°F (700°C) 500 X
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Etchant: 20 ml HCI, 40 ml HNO3, 60 ml glycerin

FIGURE I I- 42. Microstructure of Alloy 1-B-37 (70• 8Co-15Ni-5Fe-2.2Ti-

1.5A1-0.5Zr-5Cr) After 100 Hours Aging at

1292°F (700°C) 500 X
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FIGURE I I- 43. Microstructtu_e of Alloy 1-B-38 (70.8Co- 15Ni-5Fe-2.2Ti-

1.5.41-0.5 Zr-5W) After 100 Hours Aging at

1292°F (700°C) 500 X
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FIGURE I I- 44. Microstructure of Alloy 1-B-39 (70.8Co-15Ni-5Fe-2.2Ti-

1.5Al-0.5 Zr-5Ta) After 100 Hours Aging at

1292°F (700°C) 500 X
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Etchant: 20 ml HC1, 40 ml HNO3, 60 ml glycerin

FIGURE I I- 45. Microstructure of Alloy l-B-40 (70.8Co-15Ni-5Fe-2.2Ti-

1.5Al-0.5 Zr-5Mo) After 100 Hours Aging at

1292°F (700°C) 500 X
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FIGURE I I- 46. Microstructure of Alloy l-B-41 (70. BCo-15Ni-5Fe-2.2Ti-

1.5Al-0.5Zr-5V) After 100 Hours Aging at
1292°F (700°C) 500 X
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However, grain boundary precipitate may present a problem
in I-A-34. One can conclude that the combination of one

percent tungsten plus five percent tantalum or two percent

silicon plus five percent tantalum in an alloy with 15 percent

nickel, 25 percent cobalt, balance iron is a favorable combina-

tion of elements added to obtain precipitation hardening with

stability of the matrix up to I022°F (550°C) and higher.

The combination of aluminum plus tantalum, aluminum plus

titanium plus tantalum, aluminum plus titanium plus tantalum

plus molybdenum, as in 1-A-35, 1-A-36, and 1-A-37, proved

very interesting. The change of hardness during aging at 1022°F

(550°C) was gradual -- less than five percent within 100 hours,

but a strong increase of coercivity was observed. The stability

of the ferromagnetic _ phase and the magnetic saturation

was quite good with B s = 15,000 gauss or better at ll12°F (600°C).

Faint grain boundary precipitate was present in the microstructure

of alloy 1-A-37 only. It might be possible to avoid the undesir-

able increase of coercivity when the "addition of aluminum plus

titanium plus tantalum is combined with another addition, which

may keep the coercivity low as silicon addition does, or with a

modified basic composition with lower coercivity as iron - 12

percent nickel - 25 percent cobalt.

It should be noted that alloy 1-A-42 is low in nickel (only five

percent) and behaved quite similar to the 15 percent nickel alloys.

Stability of a phase was sufficient. The B s was higher than

15,000 gauss at ll12°F (600°C). Maraging strengthening could

be applied and change of hardness and coercivity during aging for

I00 hours at 1022°F (550°C) was less than 10 percent. Only the

value of coercivity was slightly high at 38 oersteds. This alloy

exhibited exceptional stability during aging.

Based on the results on the cobalt-base alloys, one can conclude

that the alloy I-B-39 deserves attention as a candidate material.

The harch]ess went up to 411 VHN during isothermal aging. Coer-

civity remained reasonably low. The sacrifice in magnetic

saturation of this alloy was less than in the other alloys having
a hardness above 300 VHN.

3. Program for the Next Quv_rter

After evaluation and approval of the experimental alloys by the NASA

Project Mauv._er, selected alloys will be melted in the form of larger
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BI TASK 2 - INVESTIGATION FOR RAISING THE ALPHA TO GAMMA

TRANSFORMATION TEMPERATURE IN COBALT-IRON ALLOYS

Work on th_s task is complete and will be reported in the Final Topical

Report.
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Co TASK 3 - DISPERSION-STRENGTHENED MAGNETIC MATERIALS FOR

APPLICATION IN THE 1200 TO 1600°F RANGE

1. Summary of Technical Progress

a) Four cobalt-base and four 27 percent cobalt-iron base

sintered compacts of prealloyed atomized powders were

extruded into rod. Magnetic and tensile properties are

being determined on these extrusions which are dispersion-

strengthened with boride particles.

b) Three cobalt-base rods dispersion-strengthened with thoria

particles that were purchased from suppliers were tested

for magnetic properties, and tensile properties are being

determined. Two of these rods (Co + 10 v/o ThO 2 and

Co + 2 v/o ThO 2) are being tested in the hot extruded con-

dition, while one rod (Co + 2 v/o ThO 2) was tested after

an 85 percent cold reduction by swaging.

c) Measurements on the microstructure of dispersion-strength-

ened materials are continuing. Dispersoid parameters such

as volume percent of dispersed phase, particle size, and

interparticle spacing were measured with the optical micro-

scope and on photomicrographs. (The electron microscope

will be used to make more accurate measurements on the

dispersoid in extrusions with the best creep and magnetic

properties at a later date. )

d) Data obtained to date on dispersion-strengthened rod indi-

cate that the 27 percent cobalt-ircn base compositions have

better magnetic properties (lower coercive force and higher

saturation) than the cobalt-base. There will be no problem

in achieving the program goal of a coercive force of less

than 25 oersteds at 1200-1600°F in either 27 percent cobalt-

iron base or cobalt-base compositions. A saturation mag-

netization of 12 kilogauss (the goal is 12 kilogauss minimum

at 1200-1600°F) can be met at 1600°F by the 27 percent

cobalt-iron base alloys containing as much as approximately

20 v/o dispersoid, while the cobalt-base compositions must

contain somewhat less than 10 v/o dispersoid in order to

meet this goal at 1600°F. However, the continuing investi-

gation may establish that a much smaller volume percent

.......... _.....on str_no_h_nm _ purposes.
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e) Tensile test data were obtained on several compositions

at 1200°F, and tests at 1600°F are being initiated. The
correlation of tensile properties with the microstructures

are, therefore, incomplete. Tests so far at 1200°F (on
specimens aged 100 hours at 1200°F at 1 x 10 -5 torr or

less) indicated that the cobalt-base and 27 percent cobalt-

iron base extrusions of prealloyed atomized powders

containing boride dispersions have substantially higher

ultimate and yield strengths than the cobalt-base extru-
sions containing thoria dispersions. However, it should

be pointed out that the former contained of the order of
20 to 26 v/o dispersed particles, while the latter contained

10 v/o and 2 v/o thoria.

One of the best combinations of magnetic and tensile proper-
ties at 1200°F in tests made to date was achieved with an Fe

+ 24.8 w/o Co + 1.1 w/o B + 3.2 w/o Zr extrusion which had

the following properties at 1200°F (creep resistance will be

determined at a later date):

Coercive force, H c = 8.4 oersteds

Saturation magnetization, B s = 17,200 gauss

Ultimate Strength = 62,100 psi

Yield strength (0.2% offset) = 31,500 psi

Elongation in 4D = 40 percent

g) Processing into sintered compacts was nearly completed

on four internally oxidized cobalt-base and 27 percent

cobalt-iron base atomized powders containing additions

of aluminum and beryllium, and six composite powders
containing dispersed alumina and thoria particles. The

microstructure of the sintered compacts is being evaluated
before extrusion.

2. Discussion

The purpose of this project is to develop a dispersion-strengthened,
magnetically soft material for use in the 1200-1600°F temperature

range for rotor applications. As a goal, the material should have the
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following properties at some temperature between 1200 and 1600°F,

preferably at 1600 °F.

Saturation Magnetization, B s = 12,000 gauss minimum

Coercive Force, H c = 25 oersteds maximum

Creep strain in 10,000 hours at 10,000 psi = 0.4 percent
maximum

In pursuit of this goal, dispersion-strengthened cobalt-base and 27

percent cobalt-iron-base extrusions are being made from (1) pre-

alloyed atomized powders containing boride and cerium intermetallic

compound particles, (2) internally oxidized powders containing alumina

or beryllia, and (3) composite powders containing both a metal phase

and a refractory oxide phase (alumina or thoria) within each powder

particle. Also, dispersion-strengthened cobalt-base extrusions con-

taining thoria were purchased from two suppliers. The work done

so far is part of the initial evaluation phase of the project which in-

cludes determination of saturation magnetization, coercive force,

and tensile properties at room temperature and in the 1200-1600°F

range. Later on, the intermediate and final evaluation phases of this

project will be conducted on the best candidate compositional systems
developed in this first phase.

a. PREALLOYED ATOMIZED POWDERS

(I) Extrusion

(a) Machining of Sintered Compacts and Cans

The eight sintered compacts of prealloyed atomized

powders containing dispersed boride particles that were

described in the third quarterly report were extruded

into rod. The compacts, which were approximately

two inches in diameter by three inches long after

sintering, were machined to 1.95 inches diameter so

that they would fit inside 2 inch I.D. x 0. 125 inch thick

wall mild-steel cans. Care was taken to insure that

the compacts remained dry and clean during the machin-

ing operation. The mild steel can (SAE 1020) had a

1.5 inch thick nose plug on the front end which was

machined on the outside to a 90 degree truncated cone
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This matched the entrance angle on the die and the
die opening of 0.75 inch diameter. The can was made
with the back-end open to receive the compact and the
2 inch diameter x 0.25 inch thick end plug of mild
steel which later was elech_on-beam welded flush with
the end of the can. The inside length of the can matched
the length of each compact plus the 0.25 inch thickness
of the end plug. All outside surfaces of the can were
sand blasted to promote adherence of the glass lubri-
cant. The total weight of compact, can, and end plug
was about four pounds. The compacts themselves
weighed two pounds each.

(b) Hermetically Sealing Compacts in Cans

The cans were evacuated to less than 1 x 10 -5 torr

and tested for helium leak tightness before the com-

pact was inserted and the end sealed. Each open-end

can with the compact inside and end plug was baked

out for two hours at 1220°F in the 10-5 torr range.

After cooling to room temperature and back-filling

with 99.996 percent purity argon, the cans, compacts,

and end plugs were removed from the furnace and

carried in a covered container to a Sciaky electron-

beam welder (30 kW, Type VX-50 x 30 x 42 with 16

inch diffusion pump), where they were immediately

evacuated to the 10-5 torr range. Each end plug had

eight longitudinal slots 0. 063 inches wide x 0.032 inches

deep equally spaced around the periphery to facilitate

evacuation of the can. The welding conditions were

fixed from trial runs so as to give 30 to 50 percent

penetration through the 0.25 inch thick end plug. The

method had been found by previous experience to give

leak tight joints.

(c) Lubrication of Billets and Tools

Before preheating the canned compacts for extrusion,

the outside of the can, except for the back-end, was

coated with a 0. 125 inch thickness of glass slurry

consisting of a water soluble, borate-type glass (Code

No. 9773, Corning Glass Works, Corning, New York)

with collodion and amyl acetate binder, and air dried.
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The extrusion tools were made of AISI H-12 hot-work
tool steel hardened to Rockwell C 45 to 50 and con-
sisted of an extrusion container 12 inches long with
a 2.360 inch diameter bore, a die with a 0. 750 inch
diameter hole and a conical entrance of 90 degrees
included angle, and a ram with a 2. 350 inch diameter
dummy block attached. The tools were mounted on the
horizontal bed of a dovv-nacting, 200 ton hydraulic
press. The extrusion direction was downward. Pre-
parations for extrusion involved brushing the die, bore
of the container, and dummy block while cold with either
Sicon Lubricant (colloidal suspension of silicone resin
and graphite in water, Lot IIX915, Midland Industrial
Finishes Co., Inc., Waukegan, Illinois) or Dag Dis-

persion No. 99 (colloidal suspension of graphite in

organic solvent, Acheson Colloids Co., Port Huron,

Michigan). In addition, two glass disks of the borate-

type glass weighing 30 grams each and measuring 2.25

inches diameter x 0.5 inch thick were placed inside the

bore of the extrusion container on top of the die. Next,

50 grams of loose borate glass powder were poured

into the bore of the container on top of the disks.

Before the glass was added to the bore, a 0.75 inch

diameter x 0.5 inch thick plug of mild steel with a

slightly oversize diameter on the top end was placed

in the hole of the extrusion die to insure glass was

retained until extrusion started. This lubrication

practice for extrusion was generally in line with the

recent literature on the subject (refs. 1 to 5). The

borate-type glass (Corning Code No. 9773) was select-

ed for use because it has a viscosity of between i00

and 300 Poises at 2000°F (the billet extrusion tempera-

ture), and could easily be removed from the extrusion,
die _,_a _. tools _'_ " wa_e_.......... s_,,_e It was soluble in .....

(d) Extrusion Procedure

The extrusion container and die were preheated to

approximately 900°F for extrusion. The canned com-

pact previously coated with glass was placed in a Type
304 stainless-steel retort 3.75 inches I.D. x 7.5 inches

inside length with the uncoated back end of the billet

resting on the bottom of the retort. A matching cover
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(2)

plate was placed over the top of the retort. Argon of

99.996 percent purity flowed through the retort at five

SCFH by means of an inlet tube at the bottom and an

outlet tube at the top during preheat. A thermocouple

placed inside the retort alongside the canned billet

gave temperature readings which corresponded very

closely with the indicated furnace temperature. The

billet temperature was raised from room temperature

to 2000°F and held at 2000°F for approximately one
hour. The billet was removed from the furnace and

retort, and immediately extruded to 0.75 inch diam-

eter rod with an extrusion speed of 43 feet per minute

(8.6 inches per second). The material from the sintered

compact was present in the 0.75 inch diameter extru-

sion as a central core, whose diameter varied from

0.38 to 0.63 inches, surrounded by mild-steel cladding.

The minimum extrusion ratio for the alloy core was

Ii to I. The extrusion starting pressures for the com-

pacts varied from 53,000 psi to 91,000 psi. The max-

imum length of 0.75 inch diameter rod obtained was

33 inches. After scrapping a nine inch length from

the front and a four inch length from the back (because

of rear-end extrusion defect) the maximum length of

core material available for subsequent testing purposes

was 20 inches. Even on a billet, which was only about

one-third extruded, an eight inch length of core material
was obtained.

Testing of Extrusions

(a) Inspection for Defects

Transverse sections from the front and back of each

extrusion were cut off and etched for macroscopic
examination in order to locate sound core material

before test specimens were taken. Macroetching was

performed with the following solutions: 5 percent nital,

50 percent nitric acid in water, and 50 percent hydro-

chloric acid in water. No gross defects were found in
the core material near the front of the extrusion. As

a further precaution, transverse and longitudinal sec-

tions from the front and back were examined under the
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microscope in the as-polished condition and after
etching in a solution of acetic-nitric-hydrochloric-
water (1: 1:4:1 ratio).

(b) Microstructure of Sound Material

The microstructure of the extrusions was revealed
by etching in the acetic-nitric-hydrochloric-water
solution previously described (Figures I 1-47, II-48,
and II-49). Longitudinal and transverse sections were
examined with a Unitron Metallograph Model BN-11
at magnifications up to 1500X. The size of secondary-
phase particles dispersed in the cobalt and 27 percent
cobalt-iron matrix, their interparticle spacing, and
the percent by volume of dispersed phase are being
determined in representative areas using a Unitron
filar micrometer eyepiece. Also, measurements are
being made on photomicrographs using a Norelco Type
52022 film illuminator and measuring device (with mil-
limeter scale and vernier). Lineal analysis and point
counting techniques are applied (refs. 6 and 7). The
uniformity of the dispersion, the amount of porosity,
and possible indications of lack of bonding between the
dispersoid and the matrix were noted. X-ray difraction
back reflection Laue patterns were obtained from vari-
ous regions on the metallographic specimens to indicate
the degree of recrystallization and grain size (refs. 8
and 9). The initial results of the microstructural ex-
aminations are presented in Table II-8.

The identity of the secondary,phase particles seen in
the. extrusions has not been determined yet. In the
cobalt-base alloys, some of these constituent particles
may belong to the family of ternary borides called tau
which have the Cr23C 6 structure (D84 structure type)
and are represented by T23_mMmBn, where T is Co,
and M is one of the following: Ti, Zr, Cb or Ta, (refs.
10 and 11). Roughly, m ranges from 2 to 3.5 and n
from 5 to 12. The composition of the cobalt-tantalum
boride is Co21 Ta2B 6 at 800°C (1472°F) and in the iso-
thermal section no tie lines run in the direction Co to
TaB 2. No D84 type borides have been reported with
iron, although ternary iron carbides and an iron carbo-
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FIGURE I I- 47. As-Extruded Rod of Atomized Powder No. 6, Co+l. 2% B+

7.7% Ta, Showing Boride Particles (gray) and Other

Particles of Dark Constituent Dispersed in Cobalt

Matrix, Longitudinal Section Near Front of Extrusion,

i000 X. Etched in Acetic-Nitric-Hydrochloric- Water.

(i: 1:4:1 Ratio)
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FIGURE II-48. As-Extruded Rod of Atomized Powder No. 13, Fe+24.8% Co+
i. 1% B+3.2% Zr, Showing Boride Particles (light) and Other

Particles of Dark Constituent Dispersed in _e-Co Recrystal-

lized Matrix, Grain Boundaries Revealed, Longitudinal Sec-

tion Near l_ront of Extrusion, 500X. Etched in Acetic-Nitric-

Hydrochloric- Water. (i: I: 4:1 Ratio)

75



!

20

I0

0

Microns

FIGURE I I- 49. As-Ex'truded Rod of Atomized Powder No. 14, Fe+25.8% Co+

0.9% B+4. 1% Cb, Showing Boride Particles (light) and Other

Particles of Dark Constituent Dispersed in Fe-Co Matrix,

Transverse Section Near Front of Extrusion, 1000 X. Etched

in Acetic- Nitric- Hydrochloric- Water. (1: 1: 4:1 Ratio)
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literature. The ternary borides, tau, crystallize con-
gruently from the melt and are reported to have micro-

hardness values somewhat above hardened steel (ref. 10).

(c) Effect of Thermal Treatment on Dispersoid and
Properties

An attempt to correlate the dispersoid parameters

(chemic_ composition of the dispersed phase, size

of particles, interparticle spacing, and volume percent)

with the magnetic and tensile properties, which will be
discussed later, is continuing for the various materials

investigated on this program. Insufficient data have

been obtained to make a correlation yet.

In the case of extrusions made from atomized powders,

there are four stages in processing where thermal

treatments have been applied:

1) Hydrogen reduction of powders for six
hours at 1220°F.

2) Hydrogen sintering of compacts for two
hours at 1800°F.

3) Vacuum bake-out of compacts m_d cans
for two hours at 1220°F.

4) Preheating of canned compacts for extru-
sion for one hour at 2000°F.

Although all of these steps are desirable in the pro-

cessing of the powders into extrusions, the 1800°F and
2000°F temperatures are well above the intended ser-

vice temperature range of 1200°F to 1600°F. Process-

ing temperatures and times could be decreased if the

tensile data presently being generated indicate that the

particle size and interparticle spacing of the dispersed
phase are consistently too large as a result of thermal

treatment to achieve the desired strength levels. Also,
once a stronger correlation between strength at elevated
temperatures and dispersoid parameters has been

achieved, there may be justification for screening out

some remaining compositions on the basis of instability
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and agglomeration of the dispersed phase after
hydrogen reduction and sintering without carrying
them as far as the extrusion stage.

(d) Location and Preparation of Test Specimens
From Extrusions

After the macroscopic and microscopic examinations
of sections from the front and back of the extrusions
had located the intermediate core material of high
quality, samples were taken for testing starting near
the front of the extrusion. The d-c magnetic test
specimens were taken first. The magnetic saturation
specimen was machined to 0.1 inch diameter x 0.1
inch long, and the coercive force specimens to 0.25
inch diameter x 1.0 inch long. Next, the tensile
specimens which were 2. 125 inches long with 0.25
inch diameter ends and a 0. 125 inch diameter reduced
section, as shown in Figure II-50, were obtained.
Actually the tensile specimens were rough machined
in a lathe and left with an 0.020 inch oversize diam-
eter on the reduced section. Those specimens to be
aged 100 hours at elevated temperatures in a vacuum
of 1 x 10-5 tort before testing were given their aging
treatments before grinding the threads on the ends
and the diameter of the reduced section to final size.
Coolant was used in all machining and grinding opera-
tions.

(e) D-C Magnetic Properties

Magnetic testing was conducted at the Westinghouse

Research and Development Center under the super-

vision of Dr. K. Detert and the following description
of test procedure was provided by him (ref. 12). The

coercive force He, was measured directly using a

Precision Coercive Force Meter, Manufactured by

Institute Dr. Forster, Reutlingen, West Germany
(ref. 13). The 0.25 inch diameter x 1.0 inch long

specimen was magnetized in a field of 1300 oersteds

in a large field coil. After switching off the field,

the remanent field of the specimen was picked up by
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0.125 + 0.001

Thd.NC

NOTE: Taper g_uge length "G" to center so that

the dia. at the ends of the gauge length
exceeds the dia. at the center of the

gauge length by not less than 0.0005 inch
nor more than 0.001 inch. "G" and total

length are nominal.

Westinghouse Dwg. No. Ref. EDSK 326749

FIGURE II-50. Tensile Specimen
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a sensitive field probe and a reverse field gradually

applied until the field probe measured no remanent

field coming from the specimen. For tests at 1200

to 1600°F, a tube furnace with electrical resistance

heating coil of platinum - 10 percent rhodium wire,

bifilar wound, was placed inside the field coil of the

coercive force meter. A flow of 99. 996 percent

purity argon was maintained through the tube to pro-

tect the specimen against oxidation. The specimen

was held at temperature for five minutes before its

coercive force was measured. Alternating current

was supplied to the furnace during measurements.

The accuracy of the coercive force values at all

temperatures was plus or minus two percent or

better, while the temperature was held within plus

or minus 10°F of that intended, as indicated by a

thermocouple. Measurements were made on standard

specimens at the start and end of each series of tests

for verification of test procedure.

The specific saturation was measured on a 0.1 inch

diameter x 0.1 inch long specimen weighing approxi-

mately 0.1 gram. The length was short in order to

avoid too high demagnetizing forces. The saturation

was measured by means of a magnetic balance in a

field gradient of 975 oersteds per centimeter with a

mean applied magnetizing field of 1I, 500 oersteds

(refs. 12 and 14). Actually, even this high a field is

not enough to reach saturation in cobalt alloys at

room temperature. It has been reported that 17,000

oersteds are required for pure cobalt (ref. 15). The

magnet was supplied by Varian Associates, Model

V-4007. The specimen was sealed in a quartz tube

which was evacuated and back-filled with 99.996 per-

cent purity argon to a pressure of 100 mm. of mer-

cury. The quartz tube was attached to a transducer

gauge supplied by Statham Transducer Inc. The force

acting on the specimen due to the applied magnetic

field was determined. For measurements above room

temperature, a small furnace slightly under 1 inch

O.D. x 0.25 inch I. D. x 3 inches long, bifilar wound

with platinum - I0 percent rhodium wire was used.
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During saturation measurement, alternating current

was supplied to the furnace. The temperature was

checked by placing a separate thermocouple inside

the furnace at the position of the specimen to be

measured. The temperature was controlled to bet-

ter than plus or minus 10°F. The accuracy of the

saturation values was plus or minus one percent.

The holding time at elevated temperature before

testing was five minutes. A standard iron or cobalt

specimen was measured at the start and end of each

series of experimental compositions for calibration

purposes. The saturation magnetization, Bs, in

gauss was calculated from the specific saturation,

(saturation magnetic moment), _s, in emu per gram

from the equation:

B s = 4 :Sos

where:

= density in g/cm3

emu,_s = saturation magnetic moment, /_

The results of the coercive force and saturation

measurements are presented in Table I I-9. The

tentative goals set up at the start of this program,

in regard to magnetic properties, were a coercive

force, Hc, of less than 25 oersteds and a saturation

magnetization, Bs, of not less than 12,000 gauss

at some temperature between 1200 and 1600°F, pre-

ferably at 1600°F. It may be seen from Table II-9

that the cobalt-base extrusions of prea!loyed atomized

powders did not quite meet the saturation goal, even

at 1200°F. On the other hand, the 27 percent cobalt-

iron base alloys made from atomized powder did have

a saturation above 12,000 gauss in the entire range

from 1200 to 1600°F. The supplier extrusions of

cobalt-base material with 2 VJo thoria likewise meet

this saturation goal, while the supplier extrusion witi_

10 v,/o thoria does at all temperatures except 1600 °F.

In respect to coercive force, all extrusions tested
had values less than 25 oersteds from 1200 to 1600°F.
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(f) Tensile Properties

The 0. 125 diameter x 2. 125 inches long threaded

end tensile specimens were tested in an Instron

Universal Testing Instrument, Model TTC. For

the elevated temperature tests, a Satec Power

Positioning Furnace, Model RA- 1800 with a Kanthal-

Al heating element was used to heat the specimen

under vacuum to temperature. The specimens were

tested in a vacuum of 0.9 - 2.6 x I0-5 torr using

a liquid nitrogen trap after stabilizing at the test

temperature for half an hour. A strain rate of 0.005

inch per inch per minute was used up to the yield

stress (0.2 percent offset) and 0.05 inch per inch per

minute beyond that to fracture. Prior to tensile test-

ing, all elevated temperature test specimens were rough

machined and aged i00 hours at the test temperature

in a vacuum of 1 x 10 -5 tort or better (mainly 1 x 10-6

tort). One specimen from each extrusion was tested

at each temperature.

In this preliminary evaluation phase of the program,

the tensile properties are to be determined at room

temperature, 1200°F, and 1600°F on all compositions.

Those determined to date are presented in Table If-10.

b. INTERNALLY OXIDIZED POWDERS

The following four prealloyed powders were screened through 325

mesh and given internal oxidation treatments over a period of six

hours at 1830°F in oxygen of 99.5 percent minimum purity, which

had passed through a Drierite Drying Apparatus, at a pressure

of one atmosphere.

Atomized

Powder

Number
Composition

(weight percent)

Co+ 2.5Ai

9 Co + i. 9Be

17 Fe + 26.5Co + 2.3AI

18 Fe + 27.9Co + i. 4Be
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The retort and equipment used were described in the second

quarterly report. The experimental details will be described

in the next quarterly report when hydrogen reduction of the cobalt

and iron oxides, isostatic compacting and extrusion have been

completed, and the microstructure has been studied.

C. COMPOSITE POWDERS

(i) Measurements on Powders

The seven composite puwders produced by three different

suppliers that were ordered for this program were listed

in the third quarterly report. The nominal oxide content

of all powders was ten percent by volume of alumina or

thoria. The powder particle size, particle shape, appar-

ent density, and other information concerning powder

compact density, which will be discussed later, are indi-
cated in Table II-11.

The Fisher Sub-Sieve Sizer (ASTM Method B 330-58T) was

used to determine the average particle diameters (APD)

of the composite powders which were not screened before

processing sta1,._d. The powder particle size of all com-

posite powders was smaller than that of the minus 325 mesh

atomized powders given in the third quarterly report. The

powder particle size, shape, and microstructure were

examined under the microscope after mounting in plastic,

polishing, and etching. Composite powder Nos. 3, 4, and

II from Chas. Pfizer, which were recently examined, had

a general appearance similar to that of composite powder

Nos. 1 and 2 from the same source (see photomicrograph

in the third quarterly report. ) Figure II-51 shows the

microst'ructure of composite powder No. ii from Vitro

Labs after hydrogen reduction. (The chemical analysis

reported by the powder supplier was given in the third

quarterly report). The apparent density, which is the

weight of pov;der that fills a standard volume under free-

flowing conditions (without jarring) has been expressed in

terms of grams per cubic centimeter (ASTM Method B

212-48) in Table II-ll, and also as percent of the theoret-

ical density of each compostion. The composite powders

tended to have lower apparent densities than the minus 325

mesh atomized powders listed in the third quarterly report.
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FIGURE I I- 5 1. Composite Powder No. Ii, Fe+23.5,%Co+I0.8%ThO 2
(0.01- 0.06 micron thoria), From Vitro Labs After

Hydrogen Reduction Showing Irregular Shape and Fine

Grain Structure of Powder Particles. Thoria Particles

Dispersed in Matrix Are Toe Small to be Seen, I000 X.

Etched in Acetic- Nitric- Hydrochloric- Water.

(1:1:4:1 Ratio)
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(2) Hydrogen Reduction Treatments for Powders

Six of the seven composite powders have been hydrogen
reduced for six hours at 1220°F in hydrogen of 99.95 per-

cent guaranteed purity. The hydrogen used for reduction

and the 99.996 percent guaranteed purity argon used for
pre-purge and post-purge of the retort flowed from their

respective cylinders through an attached Deoxo Hydrogen

Catalytic Purifier (Model 10-50) and thence through a

Drierite Drying Apparatus. The dew point of the hydrogen,

after passing through the Deoxo Purifier and Drierite, was
measurcd to be lower than minus 90°F. These gases, flow

rates, equipment, and procedure were the same as reported

in the third quarterly report for the hydrogen reduction of

atomized powders.

Since composite powder No. 11 from Vitro Labs was re-

ported by them to be submicron (estimated 0.5 micron)

size and pyrophoric, the entire-four pound quantity re-
ceived was removed under argon from two hermetically

sealed cans in which it was shipped and spread out to a

depth of 0.5 inches in 15 shallow, rectangular trays (150

mm. long x 65 mm. wide x 19 mm. high) of impervious,

recrystallized 99 percent alumina (Coors AD 99) placed
inside the Inconel 600 retort. This work was performed

inside a 30 inches I. D. x 48 inches long Vacuum Indus-

tries glove box which had been evacuated to less than one
micron of mercury before back-filling with argon. After

sealing the retort lid, and inlet and outlet tubes, the re-
tort and powder were removed from the glove box and

placed in an electrical resistance furnace where a hydro-

gen reduction treatment was applied in the normal manner.

The powder was not pyrophoric after hydrogen reduction
because" of a sintering together of individual powder parti-

cles, thus effectively increasing their size.

(3) Isostatic Pressing of Powders

After hydrogen reduction, each composite powder was

placed in a high-speed food blender for breaking up any
lumps which might be present (no caking occurred during

hydrogen reduction). Each powder passed completely

through a 28 mesh sieve and was loaded into a rubber bag

for isostatic pressing which was conducted in the same
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manner as described in the third quarterly report. A

pressure of 50,000 psi was held for one minute. The two

pound (approximately) green compacts of composite pow-
ders tended to be of smaller diameter and greater length

than those of the atomized powders pressed under the same

conditions, reflecting the generally lower apparent densities
of the composite powders and the greater volume occupied

when a given weight was loaded into a rubber bag for pressing.
The compacts of the composite powders were approximately

1.5 to 1.8 inches diameter x 4 inches long, while the green

compacts of atomized powders were approximately 2 inches

diameter x 3 inches long. The densities of the green and

sintered compacts of composite powders are listed in
Table I I- 11.

(4) Sintering of Compacts

Sintering for two hours at 1800°F in hydrogen was carried
out in the same manner as described for the atomized pow-

ders in the third quarterly report.

SUPPLIER EXTRUSIONS OF DISPERSION-STRENGTHENED

COBALT

(1) Description of Materials

The extruded compositions listed in Table I I-12 were

obtained for the initial evaluation phase of this program.

The cobalt plus 10 volume percent thoria composition
(No. 3) from the New England Materials Laboratory was
received in the hot extruded condition. The Metals Pro-

cessing Division of Curtiss-Wright Corporation supplied

the cobalt plus two volume percent thoria composition

(No.9) in. two conditions: hot extruded and 85 percent

cold worked by swaging (after hot extrusion). According

to the specifications that the suppliers worked toward,

the purity of the cobalt and ThO 2 was to have been 99.5
percent or greater.

The New England Materials Laboratory supplied two 42

inch long pieces of extrusion designated CR-68-1 and

CR-68-2 with an alloy core and mild-steel cladding on
the surface. The core diameter was 0. 375 to 0.400
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inches and the overall diameter was 0.562 inches. The
material was reported to have been extruded at 1850°F
with a 25 to 1 reduction ratio. The extrusion direction
was indicated on the rods. The chemical analysis of the
extruded alloy core reported by the supplier is indicated
in Table II-13. The carbon content is slightly higher
than the desired target limit, while sulphur content ex-
ceeded the target limit by a considerable amount.

Curtiss-Wright Corporation sent three pieces of hot
extruded rod (24-1/8, 28-15/16, and 31-1/16 inches

long) having a total length of 84-I/8 inches. Four pieces

of cold swaged rod (16-1/16, 23-3/16, 20-1/4 and 24 inches

long) with a length totaling 83-1/2 inches were supplied

from their Lot No. PPI-18A-1. Table If-13 shows that

the ThO 2 content was slightly lower than the target limit.

(2) Testing of Extrusions

(a) Inspection for Defects

Transverse sections from the front and back of each

extruded rod were examined for defects both macro-

scopically and microscopically in the manner described

earlier for extrusions made from prealloyed atomized

powders. In this way, sound material representative

of the product was insured for testing. No gross defects

were seen. However, the Curtiss-Wright rod contained

some stringers of non-metallic material which they

stated were clusters of thorium oxide particles,

Figure II-52.

(b) Microstructure of Representative Material

cx,_m_tlon ofTable II-8 gives the results of the _ _'_ °

microstructure under the light microscope. Figures

II-52, II-53, and II-54 show the dispersion of thoria

particles in the cobalt matrix.

(c) Location and Preparation of Test Specimens from
ExU'usions

This operation was c,'_'riedout in the same manner
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TABLE II-13. Chemical Analysis of Supplier Extrusions(a)

Element

Mn
Si
C
S
P
N1
Cr
Co
Fe

ThO2
O (other ]

than as I
ThO2)

ORN(total) ]

Note:

New England Materials Lab. Supplier
Extrusion No. 3, 88.8Co*11.2ThO 2

(weigh t percent)

Westinghouse [
Specification ]

T_rget Limits | Analysis

0.04 mnximum
0.04 maximum
0.020 maximum
0. 006 maximum
0. 010 maximum

0.70 maximum
0.10 maximum
Remainder
.._

9.7 - 12.7

Precision

of Analysis

< o. 01 CO)
< o. 03 Co)

o. 023 + o. 0002
O.028 _ O.0003

(0. 001 --

(0.01 (b)

<0 01 Co)

0.06 +0.001
10.4 _0.23 (c)
0.21 - --

I. 47 (d) _-
0.004 (d) ._
o. o182 (d) ..

Curtiss-Wright Supplier

Extrusion No. 9, 97.74Co+2, 26ThO 2
(weight percent)

We stinghouse
Specification
Target Limits

0.04 ma.,dmum
0.04 mammum
0. 020 maxlmura

0. 006 mammum
0. 010 mammum
0.70 maxamum
0. 10 m_.mmum
Remainder

2.11 - 2.41

---

°.-

Hot Extruded
Analysis (f)

0.002
0.001
0.0085

(0.001
0.0003

0.4_
0.079

O. 10 (e)

1.96
0.00

0.0010

0.0019

85 _ Cold

Reduction

Analysis (g)

0. 001
0.002
0. 0092

(0.001
0. 0004

0.46
0.070

_-°

O. OX(e)

2.05
0.00

0.0028

0.0011

Precision

of Analysis

(Not reported)

(a) Reported by the extrusion supplier.
(b) Wet chemical analyses were incouclusive and, therefore, spectrographic analyses were conducted

for these elements.

(c) Precision on analysis of thorium (9.16_ thorium as analyzed which is equi_-alent to 10.4"_, ThO2).
(d) Vacuum fusion at 1700_C.

(e) Spectrographic analysis.
(f) Designated by supplier as L_t No. PPI-18A-1, Ext. #15.
(g) Designated by supplier as Lot No. PPI-18A-I, Ex't. _5.
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FIGURE I'I-52. As-Extruded Rod Supplied by Curtiss-Wright Corp., Supplier

Extrusion No. 9, Co+l. 96%THO 2 (0.01- 0.06 micron thoria),

Showing Dispersion of Thoria Particles in Cobalt Matrix.

Some of the Thoria Particles are Present as Clusters and

Stringers. Longitudinal Section Near Front of Extrusion,

1000 X. Lightly Etched in Acetic-Nitric-Hydrochloric-Water.

(1: 1:4:1 Ratio)
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FIGURE I I- 5 3. Rod Cold Reduced 85% After Extrusion by Curtiss-Wright

Corp., Supplier Extrusion No. 9, Co+2.05%ThO 2 (0.01-
0.06 micron thoria), Showing Dispersion of Thoria Parti-

cles in Cobalt Matrix. Longitudinal Section Near Front of

Extrusion, I000 X. Lightly Etched in Acetic-Nitric-

Hydrochloric-Water. (I: 1:4:1 Ratio)
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FIGURE I I- 5 4. As-Extruded Rod Supplied by New England Materials Labor-

atory, Supplier Extrusion No. 3, Co+f0.4%ThO 2 (0.01-0.06

micron thoria), Showing Dispersion of Thoria Particles in
Cobalt Matrix. Some of the Thoria Particles are Present as

Clusters and " "_trm=ers. Longitudinal Section Near Front of

Extrusion, 1000X. Lightly Etched in Acetic-Nitric-

Hydrochloric-Water. (I: 1:4:1 Ratio)
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previously described for rod extruded from pre-
alloyed atomized powders. Specimens from the
front of the rod relative to the extrusion direction
were tested.

(d) D-C Soft Magnetic Properties

The coercive force and saturation measurements
are presented in Table II-9. The coercive force
values at room temperature for the cobalt-base
supplier extrusions were higher than for the extru-
sions of cobalt-base atemized powders. This was
related to the greater proportion of hexagonal cobalt
and smaller proportion of cubic cobalt in the supplier's
extrusions. Cold working further increased the
amount of hexagonal cobalt at the expense of cubic

cobalt and, therefore, increased the coercive force

at room temperature. The tests at 1200 to 1600°F

show that the coercive force decreased considerably.

At these temperatures the hexagonal cobalt phase
had transformed to cubic. The coercive force values

of the supplier's extrusions at elevated temperatures

were less than 25 oersteds, but tended to remain as

high or higher than those of the extruded atomized

powders, even though the latter contained the greater

amount of dispersed phase. Perhaps the reason for

this is that the average particle size of the dispersed

phase was smaller in the supplier's extrusions, and

therefore, more nearly of the proper size (relative

to the magnetic domain wall thickness) to promote

"sticking" and retard domain wall movement.

The magnetic saturation of the supplier's extrusions

at all temperatures was higher than that of the cobalt-

base extrusions of atomized powders due to the dilu-

tion effect of the greater amount of non-magnetic

dispersed phase in the latter class of materials.

After more dispersion-strengthened materials have

been magnetically tested and the results analyzed, a

quantitative explanation of the relation of magnetic

properties to structure will be provided.
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(e) Tensile Properties

Not enough tensile tests have been completed to date

for comparison and analysis purposes. The data

available are given in Table I I-10.

Program for the Next Quarter

a) Magnetic and tensile testing will be continued on old and new
extrusions.

b) Measurements on dispersoid parameters will be continued in

order to correlate properties with microstructure, and to
develop recommendations concerning compositions and pro-

cessing conditions for the intermediate evaluation phase of

this program.
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D. TASK 4 - CREEP TESTING

1. Summary of Technical Progress

One standard stress rupture test was completed as a check

on the quality of the new heat of Nivco alloy (10-NO2V-1099).

Rupture occurred at 192 hours which exceeds the Westinghouse

100 hour minimum life requirement for Nivco when loaded

to 65,000 psi at l150°F in air.

b) The first specimen from the new heat has been on test 2009

hours at ll00°F and 50,000 psi. Pressure is 5.8 x 10-9

torr and total extension is 1.5 percent.

c) Specimen No. 2 from the new heat has been on test 1818

hours at ll00°F and 37,500 psi. Pressure is 3.4 x 10-9

torr and total extension is 0.16 percent. Strain time plots

for these two specimens is shown in Figure II-55.

2. Discussion

Long-term creep data are needed on high-strength rotor materials .

suitable for electric alternators. Nivco alloy (23Ni- i. 7Ti-0.4AI-

0.2Zr-Balance Co) is presently the highest temperature rotor materi-

al available. Five thousand hour tests are planned at temperatures
to IIS0°F in vacuum <(i x I0 -6 torr) to complement short-time data

run on NAS3-4162.

An unexpected, low-ductility failure of the first heat of material has

required the substitution of a second heat. The second heat repre-

sents the latest processing methods now used for the Nivco alloy.

It res'ults in a smaller grain size. The new processing methods had

not been put into practice when the Task began m_cl the original heat

represented current-practice as of that date. The discussion of the

material cha_nge m'_d the .,,_+_11 .... _1 _,_ ,_ , • g_ven,,,_,_ .... _ ....... t,,.p, etatzons was . .. in

the third quarterly report.

a. RESULTS

Both high-vacuum test specimens from heat 10-NO2V-1099

were brought to temperature slowly so that the pressure would

not exceed 5 x 10-6 tort. When the pressure reached 9x 10-7

torr, the samples were loaded. After 48 hours, capsule pres-
sure had fallen to 1.8 x 10-7 tort. Pressures of 5.8 and 3.4
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x 10 .9 torr were reached after approximately 2000 hours of

testing. The single stress-rupture test in air on Nivco alloy

was required as a quality check. The alloy must withstand a

65,000 psi stress at ll5fl°F for a minimum of 100 hours before

it is considered satisfactory for use. Good rupture ductility
wbuld be 20 percent elongation. The sample from heat 10-NO2V-

1099 ruptured at 192 hours with 33.1 percent elongation (see

Table II-14 for data). The rupture was located in the plain bar

section of the combination smoeth and notched bar specimen.

An ASTM grain size of seven was measured on the new material.

It is concluded that this particular lot of material is suitable for

long-time vacuum creep testing.

The first vacuum test specimen from the new heat of Nivco has

reached 1.5 percent extension after 2000 hours at 50,000 psi

and ll00°F. Limited vacuum creep data obtained on NAS3-4162

•placed the Larson-Miller extrapolated 10,000 hour stress for

1.0 percent strain at about 50,000 psi. Production Nivco alloy,

however, was modified since testing started to improve long-time

rupture ductility and transverse tensile ductility as mentioned
previously. These modifications have resulted in a modest re-

duction in the creep strength. The lower creep curve of Figure

II-55 was obtained from the 37,500 psi specimen and shows a
small contraction in the first 100 hours of test which is indica-

tive of stress induced precipitation normally obscured by testing at

a higher creep rate. Room temperature coercive force measure-

ments made on heat 10-NO2V-1099 are given in Table II-15.

Included are the coercive force measurements on the previous

heat (AC232) for reference purposes. The differences in the

coercivity of the different samples are the cumulative effects of

minor chemistry variations, instrument error, measuring tech-
nique and operator variables. The observed differences are not

considered significant.

kJ. STRAIN _.NALYSIS FOR A TYPICAL NIVCO ROTOR

A limited temperature-stress-creep strain analysis has been
made on a model Nivco alloy rotor. A typical solid rotor de-

sign was selected for the analysis and was taken from the work

sponsored by the Air Force on SPUR/SNAP50. The stress and

rotor tempera_re profiles were taken from a SPUR Development
Report (ref. 18) and converted into dimensionless ratios of

stress and temperature as a function of rotor radius. Next,
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TABLE II-14. Quality Check, Sta:!dard Stress-Rupture Test

Data for One Specimen from Nivco Heat

10-NO2V-1099 (air test)

TAB

Test Temperature (°F)

Stress (psi)

Rupture Time (hours)

Minimum Creep Rate (percent/hour)

Time to 0.5 Percent Strain (hours)

Time to 1.0 Percent Strain (hours)

Time to 3.0 Percent Strain (hours)

Transition Time (hours)

Transition Strain (percent)

Plastic Strain _n Loading

Rupture Elongation (percent)

Hardness Before Test (DPH)

Hardness After Test (DPH)

1150

65,000

192

0.030

0.50

7.0

67.0

72.0

3.0

0.0

33.1

371

385
= •

LE II-15. Room Temperature Coercive Force Measurements

for Nivco Heats AC232 and 10-NO2V-1099

Coercive Force (Oersteds) (a)

Heat Heat
AC232 !0-NO2V- 1099

Sample No. (Previous Heat) Sample No. (Present Heat)

1

2

3

4

5

6

7

8

Average

9.5

9.6

9.0

8.6

6.9

7.2

9.3

8.0

8.5

9

10

11

12

13

14

15

16

Average

8.7

9.0

8.6

10.1

10.4

8.0

9.0

8.9

9.2

(a) Each value is the average of 4 readings.
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all existing Nivco creep and rupture data taken over a period of

several years were reduced, with the aid of a computer, to

equations for the Larson-Miller parameter by the least squares
method. These are plotted on Figure II-56 for 0.2, 0.4, and
1, 0% creep strain and for rupture. No data points are shown

for clarity since the curves were plotted from the equations
which are based on over 200 test points. These curves were

then used to estimate the amount of creep which would occur

under varying conditions of stress and temperature in 10,000
hours. These values were used with the dimensionless ratios

of temperature and stress mentioned previously for a typical

rotor to identify the incremental creep strain which a rotor

would undergo at various operating conditions. Figures II-57
and I I-58 present this incremental strain as a function of the

dimensionless radius ratio r/roD (rOD is defined on Figure
II-57 at 825°F and two stresses. Integrating the incremental

creep strain then defines the total creep strain for a typical

application. The integrated value is also given on the two
figures.

The significance of the results is as follows:

(z) While the design limits for total creep strain over the

rotor diameter may be only 0.20 to 0.40 percent, the
localized creep may amount to several percent in typi-

cal designs. Therefore, creep testing should be done

to as much as two to four percent creep strain to pro-

vide sufficient desi_o-n information on the Nivco alloy.

(2) Using the criterion of (1) above, only a small amount
of creep will occur at the rotor inner radius where the

stresses are the highest but the temperatures are the
lowest.

(3) Most of the creep will then occur at the outer rotor

radius where the temperatures exceed 1050°F to

1075°F. The sharp rise in the slope of the curves

of Figures I I- 57 and I I- 58 show this plainly.

In making the foregoing analysis, it was assumed that the mag-
netic properties and thermal conductivity of Nivco were similar

to those of H-11 alloy used in the SPUR rotor design calculations.
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100 _q __ Curve 1 = 0.20 percent creep strain (vacuum-NAS 3-4162)

90 _ _ Curve 2 = 0.40 percent creep strain (vacuum-NAS 3-4162) -.
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FIGURE I I- 5 6. Summary Creep-Stress Rupture Larson-Miller Plot for

NIVCO Alloy (Curves are least squares fit of over 200

test points which have been omitted for clarity)

.......... • .... c. ....... Larson-Mi!!er Plot - Nivco ]l_1_u_ _._-,_ _.
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These properties are slightly different for Nivco alloy, but even

with the difference, the same general trends will occur. These
calculations are based upon the stresses in the rotor at zero

time. The stress pattern will shift with time as creep causes

a redistribution of the stress pattern.

As a result of this analysis, the four remaining creep tests

will be run at temperatures above 1000°F and at creep strains

in excess of one percent to better define creep strain at the

more critical portion of the rotor.

3. Program for the Next Quarter

Two additional tests will be started on heat 10-NO2V-1099 utilizing two

new Vacion pumps recently purchased by Westinghouse.
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SECTION III

PROGRAM II - H2GH TEMPERATURE

CAPACITOR FEASIBILITY

This program will study the feasibility of building a lightweight capacitor suit-

able for operation up to II00°F. It will utilize high-purity dielectric materials

and specialized fabrication methods. The ultimate application is in lightweight,

high-temperature, power conditioning-equipment suitable for space application.

A. SUMMARY OF TECHNICAL PROGRESS

i) Room and elevated temperature electrical measurements (dissipa-

tion factor (tan _ ), capacitance auld d-c resistance to I!00°F) in

vacuum have been completed on four different types of dielectric

materials. These include pyrolytic boron nitride (Boralloy),

polycrystalline Al20 3 (Lucalox), polycrystalline BeO, and single

crystal A1203 (Linde S2_pphire).

2) A comparison of electrical data for each of these materials shows

that pyrolytic boron nitride has significantly lower a-c losses,

higher d-c resistance, a_d exhibits less change in capacitance with

temperature than any other material investigated over the tempera-

ture range from room to II00°F. In addition, the d-c breakdown

strength of pyrolytic boron nitride is in the range of 7000 volts/mil

at I100°F. This value is several times greater than that obtained

for sapphire or BeO at II00°F.

3) Based on elevated temperature electrical measurements and a

volume parameter _" _3_ _ ,,_-_ .- -- ,, _ , ._F I_ _ ,_ _l_u_e of me, it has been _a_culated

for each dielectric material. These calculations show that pyro-

lytic boron nitride is the prime material candidate for fabricating a

high temperature capacitor by a factor of at least i00 ever single

crystal A1203 (Sapphire), its nearest competitor.

4) D-C voltage breakdown measurements were made on three single

wafer capacitors at il00=F in vacuum. (BNCapacitor No. 3,

Sapphire Capacitor No. 1, and BeO Capacitor No. 2). The results

show the need for improved instrumentation in future tests because

of the "self heatin_,j' effect _" _"'_,,mfilm electrodes. These electrodes

ac_uai_y sho_'_.i_ or drav;in_ enough current to trip the power supply relay
at the first breakdown indication.
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5)

6)

7)

8)

9)

An analysis of the electrical data has shown the significance of

substrate surface roughness, sputtering parameters (electrode

thickness) and the electrode material (bulk resistivity) on the

equivalent series resistance of a test capacitor with thin film
electrodes. The series resistance effect causes an increase in

the measured dissipation factor which is not an intrinsic property
of the dielectric material.

Several interesting effects were observed in the measurement

of capacitance and tan _ vs. temperature primarily for the metal

oxide type dielectrics. These effects can be described as a hys-

teresis or dielectric "after working" phenomena on measuring

tan _ and capacitance during heating and then during cooling from

an elevated temperature. In addition, a marked aging (decrease)

of tan _ and capacitance was recorded for a BeO capacitor after

it had been heated in air to 970°C (1778°F). An attempt has been
made to account for these observations.

A series of preliminary experiments were performed to determine

the effects of heat treatment and a sputtered active metal base

coat on electrode adherence. The results indicate that titanium

and tungsten base coats and post electrode deposition heat treat-
ments in air have a marked effect on the adherence of Pt-20% Rh

electrodes on metal oxides (Sapphire, BeO and Lucalox) but no

detectable effect on pyrolytic boron nitride.

Lapping methods have been substantially improved in preparing

one mil thick wafers of pyrolytic boron nitride. Wax bonding of

wafers to a holding fixture has been found to be unnecessary in

order to achieve satisfactory wafers in the one rail thickness

range (see Section IIIB. 3. (1)(a), (b)). Fifteen one inch square

wafershave been produced by these methods.

Five tabbed pyrolytic boron nitride wafers in the thickness range

from 0.5 to 1 mil have been prepared and electroded. Three of

these wafers have been stacked into a three layer capacitor and the

capacitance and dissipation factor of this multi-layered unit has

been measured at room and elevated temperatures (to II00OF) in

vacuum (l-3x 10 -7 torr).
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B. DISCUSSION

One of the basic objectives of this program is to demonstrate methods of

fabricating single layer capacitors from a group of candidate high temper-

ature dielectric materials in bulk form.and to establish a basis for select-

ing the most promising material for further investigation in a multi-layered

capacitor configuration. These results can then be related to a determina-

tion of feasibility for high temperature capacitors which are lightweight

and suitable for static power conditioning apparatus for space applications.

A lightweight high temperature capacitor capable of operating in the 800 to

1100°F temperature range without supplemental cooling must have low

losses, high capacitance stability and a volume parameter (MF.volts/IN 3)

comparable to equivalent capacitor types designed for much lower operating

temperatures. In terms of specific goals these capabilities include:

1) Volume Parameter (MF.volts/IN3). 50 to 150

2) Dissipation Factor (max.) at ll00°F: 0.005 to 0.03 (60 cps to
50 kc/sec)

3) Capacitance Change: +5% (room temperature to ll00°F)

The three earlier quarterly reports that have been issued on this program
have discussed in detail the results achieved and the methods and materials

used to prepare thin (< 5 mil) dielectric wafers. These wafers have been

considered as candidate materials and processed into single wafer capaci-

tors by slicing, lapping and polishing techniques followed by electroding

with sputtered thin film electrodes. Electrical properties have been mea-

sured at room and elevated temperatures (to ll00°F) in vacuum ( < lxl0 -6

torr).

These data have been reported for single wafer capacitors of pyrolytic boron

nitride (Boralloy) and single crystal A120 3 (Sapphire). In this report simi-

lar data are included for" hot pressed beryllium oxide and polycrystalline

A1203 (Lucalox) as well as additional data for pyrolytic boron nitride and

sapphire.

One of the objectives of this program is to determine which of these candi-

date materials can be fabricated from its bulk form into a thin capacitor

wafer. To make a valid comparison concerning the "fabricability" of these

materials a determined effort has been made to achieve the thinnest practical

thickness for each type of material consistent with satisfactory electrical

properties at room and elevated temperatures. The ratio of the measured

capacitance (MF) to volume (IN3) is an indicator of this "fabricability" since
til_ measured cav, ac_ _.... _s _...... _1_, ,_,-_,-_n_] tn fhe dielectric thick-

ness and the volume of dielectric be[_:.,eenthe plates is, of cuu_'se, less [or

thinner material. In this report, a "figure of merit" (M) has been deter-
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cd For each dielectric material investigated based on its fabricability

,{ elevated temperature electrical properties. This "figure of merit"

,._,!yshows the superiority of pyrolytic boron nitride over the other

;:erials evaluated for high temperature (IIO0°F) capacitor applications.

,,_o included in this report are the results that have been achieved in

::.?aring and testing pyrolytic boron nitride material for multi-layered

,,,acitors. The individual wafers in this type of capacitor are stacked

_ on top of the other and their electrodes are interconnected in parallel

,brain higher capacitance values.

Preparation of Single Wafer Capacitors

a. BERYLLIUM OXIDE

Two electroded BeO capacitors have been prepared from a

group of six hot pressed BeO specimens received from Atomics

International with "as ground" or lapped surface finishes. The

wafers were 0. 470 inch diameter with a thickness ranging from

5 to 6 mils. These wafers were sliced (in a direction perpen-

dicular to the pressing axis) from a core sample taken from the

center of a hot pressed slug three inches in diameter by one

inch thick. The hot-pressed slug was pressed in a graphite die

from Minox AAA powder (99.95% purity). An analysis of Minox

AAA (Mineral Concentrates and Chemical Co. ) is given in the

first quarterly report.

R. L. McKisson of Atomics International has reported that the

material is > 99.9% dense with an average grain size of 12

microns. The purity of the hot pressed material is probably

very close to the purity of the starting raw material except for

any impurities that may have diffused into the charge during

hot pressing. However, since the sample wafers were obtained

from a core sample this source of contamination would be

minimal.

An effort was made to lap and polish these wafers to a minimum

practical thickness. The techniques and equipment used are the

same as those that have been described in previous reports for

Lucalox and Sapphire wafers except as noted in the following
discussion.

Two BeO wafers were wax bonded to individual metal holders

( _ 1 lb. each) and lapped and polished on the Syntron machine

with nine micron diamond on a nylon lap surface. Periodic

the machine circum[erential cracks v/ere noted at the wafer

edges. Two additional wafers were selected and each wafer
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was gently hand lapped on both sides with six micron diamond

on a glass plate. These wafers were then remounted on metal

holders (~ 1 lb. each) and lapped and polished on the Syntron

machine with nine micron diamond on a nylon lap surface.

One of these wafers was successfully polished (semi-polish-

-grain pull outs were evident) on both sides. The other wafer

was polished on one side but developed circumferential cracks

around its edge during polishing on the reverse side. The

final thickness of the polished wafer was about three mils.

Pt-20% Rh electrodes were applied to the three mil semi-

polished wafer by sputtering. Details of the sputtering pro-

cessing conditions are listed in Table III-1 under Group 4.

During loading of this wafer between sputtering masks a short

hair line crack appeared at one edge of the disk even though

special precautions were taken to avoid such an occurrence.

Pyrolytic boron nitride masks were used and a modified

clamping method was employed to obtain soft bearing surfaces

and light uniform pressures. This crack, however, was

masked with a narrow thin strip of pyrolytic boron nitride and

electrodes were sputtered on both surfaces in the usual manner.

Another BeO wafer was prepared for electroding but no attempt

was made to polish its surfaces. Both surfaces were lightly
lapped with six micron diamond on glass and then cleaned. The

cleaning procedure used is the same as that reported in the third

quarterly report for sapphire. Details of the sputtering process

for this wafer are also listed in TableIII-1 under Group 5. No

difficulties were encountered in mounting and sputtering elec-

trodes on this wafer apparently due to a minimum amount of

mechanical working, and its increased thickness (... 4.5 mils).

The two wafers with sputtered electrodes are designated BeO

Capacitor No. 1 and No. 2 for identification and cross refer-

ence in subsequent test.ing.

Comparing the workability of hot-pressed BeO wafers with

Lucalox, hot pressed Linde A or synthetic sapphire, indicates
that BeO is mechanically weaker than the various forms of

aluminum oxide and cannot be lapped and polished to thin

sections much less than about four to six mils. This observa-

tion is based on similar lapping and polishing techniques used
for each of these materials.
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b. SAPPHIRE

A discussion of lapping, polishing and cleaning methods used

to prepare the sapphire wafers for application of sputtered
electrodes was included in the third quarterly report. One

additional sapphire capacitor" has been prepared during this

report period using similar methods. This wafer has an over-

all diameter slightly greater than one inch with an average
thickness of 3.2 mils. Standard 0.683 inch diameter Pt-20%

Rh electrodes were sputtered on the central portion of the

wafer. The sputtering process conditions are shown in Table

III-1 under Group 3.

A comparatively long polishing time ( N 100 hours) was required

on the Syntron machine using nine and three micron diamond on

nylon to polish both sides of this wafer. However, the surface
polish was such that mirror-like reflecting electrodes were

produced. This wafer is designated Sapphire Capacitor No. 2.

c. LUCALOX

A number of thin Lucalox wafers were prepared during the first

and second quarterly report periods in the three to six rail

thickness range. These wafers have semi-polished surfaces

due to a large number of grain pull-outs. As previously re-

ported, the pull-outs could not be eliminated even though a

number of variations in polishing and lapping methods were
tried and evaluated.

One five mil wafer from this group was electroded with a

sputtered Pt-20go Rh alloy deposit. The sputtering process

conditions are shown in Table I I I-1 under Group 6.

2. Sputtered Electrode Adherence

The adherence of sputtered Pt-20% Rh alloy electrodes has proven to

be satisfactory for all elevated temperature electrical tests performed

to date..Ho_vever, when a pointed steel scribe is run across the
electrode surface the metal is sometimes separated from the sub-

strate under the scribe line (100X magnification). Using this basis

of comparison for electrode adherence the following process varia-

tions were investigated.
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a. POST ELECTRODE DEPOSITION HEAT TREATMENT IN AIR

(I) Pyrolytic Boron Nitride

No definite effect was observed for Pt-207o Rh electrodes

on pyrolytic boron nitride after heating in air in the 600°C

(ll12°F) temperature range. Since the hardness of boron

nitride is only two (2) on the Mohs scale, the scribe pene-
trates the substrate surface as well as the metal electrode

making a comparison difficult.

(2) Aluminum and Beryllium Oxides

A definite improvement in adherence was observed after

electroded wafers of sapphire, Lucalox and hot pressed

BeO were heated in air in the 800 to 1000°C (1472 to

1832°F) temperature range. Table III-1 lists the capa-

citors that were heat treated m this manner following

electrode deposition. The most important effect observed

is the change in electrical prcperties which are discussed
later.

b. SPUTTERED ACTIVE METAL BASE LAYER

A sapphire wafer and a pyrolytic BN wafer were prepared with

multi-layered electrodes consisting of a thin-base coating of

sputtered tungsten overcoated with Pt-20% Rh. The scribe

tests showed no difference in adherence for pyrolytic BN; how-

ever, the adherence of the electrodes on the sapphire wafer

appeared to be significantly improved over Pt-20_o Rh electrodes

without the tungsten base layer. Sputtering process conditions

are shown in Table I I I-1 under Group 8.

Titanium was sputtei_ed on a Lucalox and a pyrolytic BN wafer

followed by an overcoating of Pt-20% Rh. Again, the adherence

was apparently unchanged on the pyrolytic BN substrate but was

improved on Lucalox. Refer to Table III-1 under Group 7 for

sputtering details.

The preparation and evaluation of these multi-layered electrodes

has only been preliminary and the effect on electrical properties

is inconclusive. In general; however, it appears that titanium

and tungsten have little or no effect in promoting adherence
between noble metals and boron nitride. The bond between Pt-

Rh- _'

_-= _:_:_ _,._.u<.o::,_..-:Syis io_:,era:Jbv ,_neformation o/ an oxide trar.-

sition zone at _e substrate and titanium or tungsten interface.
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3. Multi-Layer Capacitors (Pyrolytic Boron Nitride)

a. WAFER PREPARATION

In terms of fabricating thin wafers of high-puri_, high-tempera-

ture.dielectrics from bulk material, pyrolytic boron nitride has

yielded the most promising results. Thin wafers can now be

routinely made in the one to two rail thickness range and, when

carefully handled, satisfactory capacitors can be prepared with

one mil wafers which have electrical properties at high tempera-

tures in vacuum superior to any other material tested.

Previous quarterly reports have outlined the slicing, lapping,

and polishing methods used to prepare one rail boron nitride

wafers. The work performed during this report period has

been directed towards improving the lapping and polishing
methods to:

1) reduce rejects,

2) improve thickness uniformity,

3) reduce the depth and number of surface scratches

on polished wafers,

4) eliminate unnecessary process steps/simplify techniques,
and

5) reduce preparation time.

The results of this work have indicated at which stages in the

process the reject rate can be reduced. Thickness uniformity

has increased to the point where no variation in thickness can

be detected across a one inch square wafer one mil thick using

a hand held micrometer. The overall process has been simpli-

fied and preparation time has been reduced primarily by elimi-

nating the need to wax bond wafers to a holding fixture during

lapping. The only phase of the process which has not yielded to

improvement, thus far, is the polishing step.

(I) Lapping Square Wafers

The most promising method recently developed to lap

wafers to the one mil thickness range is as follows:
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(a) Cleaved wafers with uneven surface_ (third quarterly
report, page 107) are wax bonded to a metal holder

and lapped with 400 grit alumina abrasive (Norton

Co. ) on a glass plate until a flat uniform surface is
obtained. The wafers are reverse mounted and the

opposite face is lapped until fiat and uniform. Wafer

thicknesses at this point range from five to seven

mils. This step is unnecessary for wafers that have

been sliced completely through.

(b) From five to seven mils down to one rail, the need to
bond the wafers to holding fixtures has been found to

be unnecessary. A series of fixtures are now used

that have different thickness steel shim strips resis-
tance welded to their flat sides. Each fixture con-

sists of a solid steel disk 3 inches in diameter and

1/2 to 1 inch thick. The surfaces of these disks havepre-

viously been surface ground and thenlapped flat amd

smooth. The shim strips are 1/2 incL wide by 12

inches long and are cut into short lengths to form a

square opening slightly larger than the wafer to be

lapped (about 1/16 inch on a side). These strips are
then laid out on the flat surface of a steel disk and

resistance welded at a number of points to the disk.

A four rail thick shim strip, for example, forms a

raised stop on the surface of the lapping fixture
whose height difference is very close to four mils

and uniform at all points after the cutting burrs
have been lapped off. In this manner, a number of

lapping fixtures have been made with four, three,
two, and one mil shim stops.

(c) Starting with a six rail thick, one inch square wafer,

the wafer is first set into a four mil shim opening
with 'a small amount of lapping fluid applied to the

interface between the wafer and the fixture. The

fixture and wafer are then carefully set on a glass
lap plate (wafer side down) mounted on the Mazur

Lapping/Polishing Machine. The machine is started

at its slowest speed setting and the wafer is lapped
(figure 8 motion) until it reaches the thickness of the

raised stop (4 mils). A 400 grit size alumina abra-

sive plus Dymo lapping fluid is used for all lapping

down to four mils. From four mils down to one mi!,
10 micron alumina (S. S. White Co. ) and deionized

...... _s u_ :._j_r:_ ,_.....,..,,:._=_:'-is _mJp_u.Lo tour mils,
it is rcue: _-_L .,<_o a three rail fixture and the proced_-e
is repeated until a final thickness in the one rail
range is achieved.
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The results using this technique have been very
satisfactory. One mil wafers are flat and do not
exhibit the type of camber or warping character-
istic of one mil wafers produced by the "wax
bonding method". Yield is h'gh (estimated at
about-90%) and the tedious and time consuming
task of squeezing out air bubbles (necessary
for "wax bonding") at the wafer-holder interface
is eliminated.

A matte wafer surface finish is produced by this
method and all attempts to date to generate a
polished surface on unbonded or "floating" one
mil wafers has been unsuccessful. Therefore,
it was decided to evaluate the electrical proper-
ties of one mil unpolished wafers for comparison
purposes with polished wafer capacitors. These
results are discussed later.

(2) Tabbed Capacitors

A tota! of about 15 one inch square by one mil wafers have
been made with matte surfaces. Three or four of these
wafers have thicknesses of about 0.7 mils and one wafer
has a thickness of 0.5 mils. These thinner wafers were
produced with the first one mil thick shim fixture which
had worn down to these thinner thicknesses.

Ten tabbed wafers (refer to third quarterly report) have
been fabricated from this group by two different methods.

(a) Ultrasonic cutting with a "cutting" tool machined
into the mirror image or "female" outline of the

wafer, and

(b) Airabrasive (S. S. White Unit) cutting using a steel
mask to cover the wafer outline.

Either of these methods is satisfactory although the "air-

abrasive" method is more convenient for small quantities.
This operation is the final machining step prior to clean-

ing before deposition of sputtered electrodes.
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The cleaning procedure is one of the most critical phases

of the process and to date it is believed that an entirely

satisfactory method has not been developed. Ultrasonic

agitation of one mil wafers in the various cleaning solutions

(Triclorethylene, Alconox and water, methyl alcohol and

acetone - see second quarterly report for details) requires

very careful control of the energy input. At least seven

tabbed wafers were rejected because small whitish spots

were visible after cleaning. It is believed these spots are

delaminations caused by excessive ultrasonic agitation.

Since it is difficult to determine a "safe" energy level with

a limited number of specimens, it has been decided to

eliminate ultrasonic cleaning in future processing.

It is planned to investigate acid cleaning and/or air and

vacuum heat treatments to oxidize and/or volatilize as

much adsorbed and absorbed organics and other impuri-

ties as possible prior to application of electrodes. The

effects on elevated temperature electrical properties will

be compared with previous results for capacitor substrates

that have been heated in air to about 900°C (1652°F) and then

heated in vacuum in the 10-6 torr range to 1000 to 2000°C

(1832 to 3632°F).

From the group of ten tabbed wafers that have been fabri-

cated in the one mil thickness range, five of these wafers

have been elecWoded. Two wafers have sputtered Pt-20%

Rh electrodes and three wafers have sputtered pure platinum

(99.95%) electrodes. The third quarterly report shows the

mask geometry (Figure I I I-10) and discusses the deposition

approach. Table III-1 under groups 5, 6, and 9 shows the
details of the sputtering processes used.

The t_vo tabbed wafers with sputtered Pt-20% Rh electrodes

were prepared primarily to establish the feasibility of the
parallel interconnection scheme as outlined and illustrated

in Figure III-9 in the third quarterly report. The next

three tabbed wafers with sputtered platinum electrodes

were prepared to check out the test fixture shown in Figure
III-l. This fixture is designed to align tabbed wafers when

stacked on top of each other mad to make external connec-

tions to the tab extensions. The component parts of the

fixture are made from 1 x 1 x 1/8 inch blocks of pyrolytic
boron nitride.
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The first test run at elevated temperatures in vacuum was

made using this fixture and a three layer stacked capacitor

composed of the three tabbed wafers with platinum elec-

trodes. This particular three stack capacitor is designated

.BN multi-layer Capacitor No. 1 and the electrical data
obtained for this unit is discussed later in this section.

b. EVALUATION (ROOM TEMPERATURE DATA)

Table I I I-2 shows the individual capacitance and dissipation
factors for the two tabbed wafers with Pt-20% Rh electrodes. In

addition, similar data are shown for these two capacitors stacked
one on top of the other and interconnected in parallel. All measure-

ments were made via the tab contact points. The arithmetic sum

of the individual wafer capacitances is shown in Table I I I-2 for

comparison with the measured capacitance of the two layer unit.

This value is within 0.01% of the arithmetic sum indicating that

a satisfactory interconnection can be achieved using "wrap around"

sputtered electrodes.

One of these tabbed wafer capacitors (Tabbed BN Capacitor No. 2)
was subsequently heated to ll00°F at 1-3 x 10-7 torr for about

1/2 hour. As shown in Table III-2 there are no significant changes
in electrical properties before and after the test when measurements

were made via the tab contact points. This test was performed

as a preliminary step in evaluating the capability of sputtered

electrodes to maintain electrical continuity around the tabs after

heating to the maximum test temperature (ll00°F).

The three tabbed wafers with sputtered platinum electrodes were

also stacked and interconnected in parallel. Room temperature

measurements obtained for this three layer unit are shown below
(designated: BN Multi-Layer Capacitor No. 1) for three different
frequencies.

, , , w --. , . ,,,

Capacitance

1134.4 pF

1133.3 pF

1132.4 pF

Dissipation Factor (tan _ ) Frequency

0.000520

0.000605

0.001140

50 cps

1 kc/sec

10 kc/sec
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These are three terminal measurements made in a shielded
metal box to minimize stray capacitance effects. The fixture
used to align the wafers and make external electrical contact to
the tab extensions is shown in Figure I I I-1.

Further inspection of Table I I I-2 shows a correlation between
wafer surface finish and dissipation factor. For example, tabbed
BN Capacitor No. 1 has a polished surface whereas tabbed BN
Capacitor No. 2 has an "as lapped" surface and it can be assumed

that both wafers have equal thickness electrodes since the sputter-

ing conditions were almost identical (11 minutes at 700 V for No. 1

and 10 minutes at 700 V for No. 2). Comparing the dissipation
factor shown in Table III-2 for these two capacitors shows that

a lower dissipation factor was measured at 1 kc/sec and 10 kc/
sec for the capacitor with polished surfaces. This indicates that

the increased loss is caused by an equivalent series resistance

introduced by the electrodes on Capacitor No. 2. The high series

resistance is apparently the result of an increase in the effective

resistivity or ohms/square resistance of the thin film electrodes

deposited on the capacitor wafer whose surfaces have a higher
degree of roughness.

A similar effect is indicated by the increase in tans with fre-

quency for the data previously shown for BN Multi-Layer Capa-
citor No. 1. The individual capacitors in this unit have "as
lapped" or matte surface finishes. The tan_ value for this

capacitor is somewhat lower at 1 kc/sec and 10 kc/sec than the
tan _ values for the first two tabbed w_ers with Pt-20% Rh elec-

trodes shown in Table III-2. This is probably due to: 1) the
thicker electrodes (longer sputtering time) and 2) the lower bulk

resistivity of platinum vs. the platinum-rhodium alloy.

These results show the need for further investigations of sput-

tering parameters, electrode materials, and surface roughness

and their effect on tan 5. Possibly an order of magnitude re-

duction in tan 5 can be achieved over much of the frequency
range of interest in this program. This work is planned for the
next report period.

4. Analysis and Comparison of Electrical Data

All capacitance and dissipation factor measurements reported in this

section were made with a General Radio Type 1620-A Capacitance
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Measuring Assembly. Three terminal coaxial lead bridge connections
were used. Elevated temperature measurements in vacuum { 1 - 4 x
10-7 torr } were made in a small resistance heated furnace insulated
with tantalum radiation shields. The furnace and the associated vac-
uum system is described in the second quarterly report. The thermo-
couple junction shown in Figure III-2 in the second quarterly report
has been repositioned so that it is embedded in the columbium disk
used to support single wafer capacitors, thus minimizing any tempera-
ture differential between the indicated _emperature and _he actual
specimen temperature. In addition, a thin platinum disk (99.95%

purity) has been resistance welded to the top surface of the columbium

disk to reduce any contacL resistance that might be introduced by an
oxide film on the columbium. This setup has not been modified during

the course of collecting the data reported in this section and the com-

parative results should have significance.

D-C resistance measurements were made with Keithly Model 610B

Electrometer and a Keithly Model 240 Regulated D-C Power Supply.

The d-c resistance of the test furnace insulators (less test specimen)
was measured at 1000 V d-c in vacuum (3 x 10-7 torr) up to ll00°F

and found to be in the range 1017 to 1014 ohms from 72 to ll00°F.

a. CAPACITANCE VS. TEMPERATURE

Figures III-2, III-3, III-4, and III-5 show capacitance change
with temperature in vacuum for BeO Capacitor No. 2, Sapphire

Capacitor No. 2, Lucalox Capacitor No. 1 and BN Multi-Layer

Capacitor No. 1, respectively. These data are shown in two
forms, actual capacitance readings vs. temperature and the

ratio of _ C/C72o F x 100. Casual inspection of the figures does
not reveal the comparative capacitance changes, therefore Figure

III-6 shows the ratio of _ C/C72oF x 100 for each of the above

capacitors plotted on equivalent coordinate points. Pyrolytic

boron nit.ride has a negative capacitance change of only 1.7% at

1 kc/sec and l l00°F. This value is almost an order of magnitude

less than BeO or Lucalox which increase in capacitance with

increasing temperature. Sapphire has a positive ratio of _ C/'C72o F
x 100 of about eleven percent over the same temperature range.

The negative value of the ratio of _ C/C72o F x 100 for pyrolytic
boron nitride at 1100°F is very close to the value that would be

expected from the decrease in capacitance due entirely to thermal

ex'pansion since pyrolytic boron nitride has a reported thermal
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O = C_ x 100 before heating in air
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f-I = 7_ .x 100 after heating m air to 960°C

/X = Capacitance (pF) before heating in air
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Capacitance Change Versus Temperature for BeO Capa-
citor No. 2 Before and After Heat Treatment in Air

(Run No. 1 Versus Run No. 2) Measured in Vacuum at
1- 3 x 10- '_ torr
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expansion (A L/L in/in) at ll00°F of 0.020 (2%) measured in the

c direction from 32 to ll00°F. Since capacitance is inversely

proportional to thickness, the correlation is very good.

These results are consistent with the extremely low impurity

level reported for pyrolytic boron nitride. An ideal dielectric

would show no change in dielectric constant or capacitance with

temperature. If the dielectric contains impurities they can act

as charge carriers and increase the polarizability (measured
dielectric constant) of the material. At higher temperatures ion

mobility, for example, is increased causing increased polariza-

tion effects and, therefore, an increase in the measured capaci-

tance. It would appear that pyrolytic boron nitride is approach-
ing the characteristics of an ideal dielectric over a wider tem-

perature range tha_ any other solid dielectric material presently
available.

b. DISSIPATION FACTOR (TAN _ ) VS. TEMPERATURE

Tan _ values vs. temperature for BeO Capacitor No. 2, Sapphire

Capacitor No. 2, Lucalox Capacitor No. 1 and BN Multi-Layer

Capacitor No. 1 are shown in Figures III-7, III-8, III-9, and

I I I-10. These data show that pyrolytic boron nitride has sub-

stantially lower a-c losses over most of the temperature range
up to and including 1100°F.

Figure III-11 shows these data plotted together for a frequency

of 1 kc/sec. The losses for the Multi-Layer BN Capacitor are

somewhat higher than those previously measured for a single
wafer capacitor (BN Capacitor No. 2) with polished surfaces.
These results are attributed to series resistance effects which

were briefly discussed earlier. A more detailed discussion is

included in the next section dealing with the data on frequency
vs. tan 6 at room and.elevated temperatures.

Cl CAPACITANCE AND TAN 5 VS. FREQUENCY AND TEM-
PERATURE

An ideal dielectric material would have a dielectric constant

independent of frequency. But any real capacitor with a solid

dielectric deviates from ideal performance (ref. 1) and has an
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equivalent circuit as shown below,

.

L

T G

where:

R = metallic resistance (leads, supports, electrodes)

L = series inductance of leads, supports and electrodes

C = capacitance between electrodes

• G = conductance (dielectric losses of supporting insulators,

solid dielectric between capacitor electrodes and d-c

leakage conductance)

The measured capacitance increases, therefore, from the zero

frequency capacitance, Co, as frequency, f, increases because
of series inductance as shown in equation (1).

(1) _ c
"C--o _ 2 _f LCo

A tendency for capacitance to decrease with increasing frequency

due to space charge polarization produces a negatively sloped

curve over part of the frequency range. The sum of these two
effects (polarization and series inductance) generally results in

a U-shaped curve for a capacitance versus frequency relationship.

Similarly, the total dissipation factor (tan _ ) varies with frequency

in accordance with equation (2).

G + 2 _ f 3/2 RC
(2) tan _ = 2_fC

At sufficiently high frequencies, tan _ will begin to increase as the

3/2 power of the frequency due to the losses represented by the

series resistance, R, in the equivalent circuit. In the lower
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frequency ranges tan _ decreases with increasing frequency due
to conductance losses (G). The sum of these two terms in equa-
tion (2) results in a U-shaped curve with a negative slope up to
frequencies ranging from 1 kc/sec to 1 Mc/sec depending on
capacit .ancevalues.

Figures III-12 and III-13 show the variations in capacitance and
the ratio of A C/C100 cps x 100 with increasing frequency for BN
Multi-Layer Capacitor-No. 1, BN Capacitor No. 2 (single wafer),
and SapphireCapacitor No. 2. These particular capacitors were
selected for illustrative purposes because they show the least
variations in capacitance with frequency of any of the capacitors
tested. The curve for BN Capacitor No. 2 at 72°F in Figure
III-12 shows only a slight decrease in capacitance (~0.2%)
from 102 to 104 cps. Thus, it appears that there is no appreciable
tendency for the capacitance to increase because of series induc-
tance. If a space charge polarization mechanism were predominant
(due to mobile charges from impurities) over this frequency range,
it would show a decreasing contribution to the total polarizability
or measured capacitance as the frequency was increased. This
effect is not apparent in Figure III-12 or III-13 for the 72°F data.
However, since series inductance and space charge polarization
are competing effects, they could cancel each other depending on
relative magnitudes.

At ll00°F the change in capacitance for BN Multi-Layer Capacitor
No. 1 shows a greater rate of decrease with increasing frequency
(Figure III-12 and III-13) due to space charge polarization (ion
jump orientation and increased concentration of charge carriers).

Above a frequency of about 4 x 104 cycles/sec the residual induc-
tance appears to override polarization effects and the capacitance
begins to increase with frequency (equation (1)).

Figures 111-14 and III-15 show comparisons of tan_ versus fre-
quency for single and multi-layer boron nitride capacitors. These
data are shown for 72°F and ll00°F measurements. A character-

istic U-shape curve is evident for BN Multi-Layer Capacitor No. 1
only at ll00°F. This is apparent!y because the conductance term

in equation (2) is of sufficient magnitude at this temperature to

control the slope (negative) of the curve at frequencies up to about
104 cycles/see. At higher frequencies the series resistance term

in equation (2) increases (f 3/2) at a greater rate and the slope of the
curve has a positive value.
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d. DIELECTRIC "AFTER WORKING" EFFECTS

Several of the curves presented for tan 6 and capacitance changes

with temperature show what appears to be a hysteresis effect

after meas_irements were made during increasing temperature

vs. those recorded during cooling. In all instances, the measured

capacitance and tan 6 values were higher on the cooling curve than

on the corresponding heating curve. This effect was not observed

to any significant extent with pyrolytic boron nitride but appeared

to be most noticeable for metal oxide type dielectrics (Lucalox,

BeO).

Several explanations have been considered to explain this effect.
The one that seems reasonable at present is somewhat analogous

to spontaneous polarization in ferroelectric materials and/or to
the concept of an electret. An electret (ref. 2) results from a

"frozen in" polarization and can be made synthetically by cooling

molten wax under an applied field. For the measurements shown

in this section tan _ and capacitance readings were made alternately

with d-c resistance measurements. A d-c voltage ranging from
100 to 1000 volts was applied to the specimens at temperatures

up to ll00°F. It seems reasonable to expect that some degree of

orientation polarization occurred particularly at the higher tem-
peratures where charge carriers (from impurities etc.) are more

mobile. On cooling, this induced polarization persists in a non-

equilibrium state and then gradually relaxes possibly by bulk or
grain boundary diffusion or surface absorption. Examples of

these effects are shown in Figures III-2, III-4, III-7, III-9, III-16,
and III-17 for Sapphire, BeO and Lucalox Capacitors at different

measuring frequencies. These effects will be studied in more

detail with pyrolytic boron nitride capacitors.

Figure I I I-18 .shows an aging effect on tan _ and capacitance for

BeO Capacitor No. 2 after it was heated in air to 960°C (1760°F).
A very marked decrease in tan _ is evident after 200 hours of

aging time at room temperature (72°F). The capacitance is also
shown to decrease with time. This effect is similar to that ob-
served in ferroelectric barium titanate.

Figures III-19 and III-20 show the effect of heat treatment on
the ratio of _i_q_C x 100 and the ratio of _ tan _ x 100 as

C50 cps tan _ 50 cps

a function of frequency for BeO Capacitor No. 2. Volatilization

of impurities is indicated by a flattening of the A C curve after heat-
ing the caoacitor to .q_/]°c (17an°_)_._ _- _" _'_ ..... I*" I _'_j a_td the
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effective series resistance of the electrodes may have been
decreased.

e. DC RESISTANCE VS. TEMPERATURE

The d-c resistivity was calculated using the relationship:

(1) a = RA/t

where:

= resistivity (ohm-era)

R -- measured d-c resistance (volume and surface

contributions)

A = area of capacitor electrodes (cm 2)

t = thickness of dielectric (cm)

Resistivity values were calculated for pyrolytic boron nitride

(BN Capacitor No. 3), single crystal A120 3 (Sapphire Capacitor

No. 2), hot pressed polycrystalline BeO (BeO Capacitor No. 2),

and polycrystalline A1203 (Lucalox Capacitor No. 1). These data
are shown as a function of increasing temperature in vacuum

(1-4 x 10-7 torr)in Figure III-21. Capacitor wafer dimensions
and electrode sizes used to calculate e are listed in Table I I I-1

for each of these capacitors. The d-c resistance was measured

with a Keithly Model 610B Electrometer and a Keithly Regulated

D-C Power Supply. In most instances 200 V d-c was applied to
the specimens.

The values obtained for d-c resistance include the shunt effects

of surface leakage currents. The magnitude of these currents is

a variable that must be considered for a more detailed analysis.

However, for comparison purposes, the curves shown in Figure
I II-21 indicate that pyrolytic boron nitride has a higher d-c

resistivity over most of the temperature range. At temperatures

in the neighborhood of ll00°F, the resistivities of all the materials

does not show as wide a divergence as indicated for temperatures

in the 300 to 900°F range. This is particularly evident for pyro-
lytic boron nitride which has resistivities several order of mag-

nitude greater than the other materials tested in this range of

temperatures.
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f. DC BREAKDOWN VOLTAGE AT ll00°F iN VACUUM

A final version of the test set up is now being made based on the

results discussed below. The problem is essentially one of

analyzing a series of breakdown voltages because the thin film
eldctrodes used on the test capacitors volatilize at each break-

down. This "self healing" effect makes it difficult to determine
the precise voltage at which an actual breakdown occurred. In

addition, it is not possible to determine whether the first break-

down is an actual puncture through the bulk of the dielectric or

whether it is a surface discharge (unless the test was shut down

and the capacitor removed and examined).

The first test performed at ll00°F in vacuum (1-3 x 10-7 torr)

showed a d-c breakdown voltage for Sapphire Capacitor No. 1

(3.25 mils thick) of approximately 6500 volts (1840 voits/mil).

This value is based on the indicated supply voltage (meter read-
ing} corresponding to the point where the relay tripped the power

supply output (10 ma). The next test was performed on a one

mil thick pyrolytic boron nitride capacitor at 1100 °F (Table I I I- 1,
Group 8). A Brush Model RD 2662 Oscillograph was used on this

test to indicate the level of voltage applied to the test specimen.

The first indication of a voltage drop occurred at 7000 volts

(7000 volts/rail). However, the power supply relay did not trip

the power supply until an indicated level of about 10,000 volts

was recorded. BeO Capacitor No. 2, was tested in a similar

manner. The first indication of a voltage drop occurred at
3250 volts (762 volts/mil). The next indication occurred at

5250 volts (1167 volts/mil). The power supply was then m,_nu-
ally turned off and the voltage was again increased with the first

indication of a voltage drop occurring at 7500 volts (1665 volts/
mil).

Examination of the boron nitride capacitor and the beryllium

oxide capacitor after these tests showed a number of puncture
holes directly through the material and volatilization of the

electrodes at these points. The capacitors were still good
when contact was made to the remaining portion of the electrodes

(From 20 to 30% reduction in capacitance).

This series of preiimLuary tests has demonstrated the need for

a more sophisticated test and measuring setup. It will be neces-

sary to record each breakdown as a function of voltage with the
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voltage raising as a linear function of time. The breakdown

voltages for boron nitride and beryllium oxide are probably more

accurate than the value indicated for sapphire. The sapphire

value appears to be somewhat high. However, for comparative

purposes, these results show that boron nitride has a volts/mil

breakdown strength which is at least four times greater than any
of the other materials tested at llO0°F.

g. RELATIVE FIGURE OF MERIT

Most of the data which has been discussed in previous sections

for each dielectric material can be condensed into a synthetic

number. This number can be obtained in a variety of ways; how-

ever, the following relationship has been used to generate a so-

called "figure of merit" (M).

(1) M - MF 1- IN--N-3-X 1 X
tan _ (ll00OF) a C/C72 o F

where: :

M = Figure of Merit

MF = Measured Capacitance (pF x 10-6) in micro-farads

at room temperature (1 kc/sec)

IN 3 = Volume (electrode area x thickness) of dielectric

material included between electrodes (refer to

Table I I I- I)

tan _= Measured dissipation factor (tan _ ) at ll00°F and

1 kc/sec

5C = Chahge in Capacitance from room temperature (72°F)
to li00°F

The value of M will be greater for capacitors that have a thinner

dielectric, the lowest losses at ll00=F and show the least change

in capacitance over the temperature range from room temperature

(72°F) to ll00°F. Therefore, the ratio of Mis an attempt to show

the relative merits of each of the dielectric materials in terms of

fabricability combined with measured ll00°F electrical data for

specific single wafer capacitors. The bar graph shown in Figure

III-22 has been prepared to illustrate the calculated values of M
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Co

for each of the four dielectric materials investigated. These in-

clude pyrolytic boron nitride (BN Capacitor No. 2), single crys-

tal AI203 (Sapphire Capacitor No. 2), polycrystalline beryllium
oxide (BeO Capacitor No. 2) and polycrystalline alumina

(Lucalox Capacitor No. i). It is apparent from Figure III-22

that pyrolytic boron nitride is a logical first choice for a high

• temperature capacitor dielect_'ic by a factor of at least I00.

Figure III-22 shows M converted into an index number using M

for BN Capacitor No. 2 as the base and multiplying by 100. All

the other capacitors are shown on a scale relative to 100 for

pyrolytic boron nitride. The electrical data used in the calcu-

lations of M were taken from 1 kc/sec measurements and are
selected "best values" for each material.

The _,olume parameter (MF/IN3) used in these calculations does

not include a voltage term because a true working voltage can-

not be assigned at this point in the program. In fact, a working
voltage could not be accurately determined unless extensive l_e

testing were performed for each of the capacitor materials. In

addition, the breakdown voltage for these materials is actually
a statistical distribution of values with a mean and standard

deviation. The breakdown strength that has been measured for

only one capacitor per dielectric is not a satisfactory substitute.

PROGRAM FOR THE NEXT QUARTER

1. Preparation of pyrolytic boron nitride wafers will be continued.

. An investigation of electrode materials, sheet resistivities and

sputtering conditions will be completed.

. A multi-layered capacitor with five or more wafers of pyrolytic
boron nitride will be completed.

153



SECTION IV

PROGRAM III - BORE SEAL DEVELOPMENT AND COMBINED

MATERIAL INVESTIGATIONS UNDER A SPACE-SIMULATED

ENVIRONMENT

The bore seal effort under Task I will evaluate promising ceramic-metal

sealing systems in potassium and lithium vapor at temperatures to 1600°F

for 2000 hours. Elevated temperature seal strength and vacuum tightness

will be determined. A four-inch diameter bore seal loaded with potassium

will be incorporated in a stator design and evaluated in a 5000 hour endur-

ance test at temperature and in a high-vacuum environment. This test will

confirm data determined on smaller geometries.

Two five-thousand hour tests will be run under Task 2 on a stator which

typifies the construction of an inductor alternator or a motor. The first

will be run between 800 andll00°F temperature. The second test will be

run with a bore seal at temperatures between Ii00 to 1600°F. All will be

tested at a high-vacuum (less than i0-8 torr) under electric and magnetic
stresses.

A transformer and two solenoids under Tasks 3 and 4 will be similarly

tested under high vacuum and at elevated temperature. The purpose will

be to evaluate the combined effects of electric and magnetic stresses, and

high vacuum on combinations of materials suitable for application to advanced

space electric power systems. One solenoid test will be under d-c excitation

and the other under intermittent excitation so the effects of an invariant elec-

tric stress can be investigated.

The design features incorporated into the stator, transformer and bore seal

were defined in detail in Appendixes A, B, and C of the first quarterly report.
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A. TASK I.- BORE SEAL DEVELOPMENT

1. Summary of Technical Progress

a) Purity test capsules have been loaded with potassium during

several loading runs under vacuum. Analyses of the oxygen

content of the potassium in the capsules by neutron activation

indicates high oxygen in the system. The amount of oxygen
which can be attributed to the loading system or the weighted

oxygen content of the capsules is not known. The oxygen
content of the stainless steel capsules supplied for the
analyses was higher than anticipated.

b) The ceramic outgassing study has been completed. The
present firing cycles applied to the ceramic in the clean fire

at 2597°F (1425°C) in N2-H2 and the vacuum(5 x 10 -6 torr)

fire which they undergo during brazing is sufficient to maintain

oxygen bearing outgassing products at a low level.

c) The evaluation of active-metal brazes for ceramic-to-metal

seals was continued. 99.8 percent beryllia modulus-of-

rupture bars were brazed to columbium-1% zirconium metal

members using five active metal brazing alloys. The brazed
specimens exhibited high flexural strength. Test results

ranged from 15,000 psi to nearly 25,000 psi.

2. Discussion

The program on ceramic-to-metal seals expands on the work initiated

under NAS3-4162. On the current Program alkali-metal loading will

be conducted in potassium and lithium under vacuum ( < 1 x 10-5 torr).

The oxygen content in potassium will be less than 10 pprn as was

observed during the previous program. The nitrogen level goal in
lithium is 40 ppm.

Active-metal seals are being pursued since these offer less-brittle

structures than refractory metal metalizings with thermodynamically

stable second phases as observed in NAS3-4162. Small samples used

in evaluations include modulus-of-rupture for flexural strength, tab-

peel for brittleness and notch sensitivity and joined cylinders for leak
tightness. Two-and-a-half-inch diameter ceramic-to-metal seals

and a four-inch seal tested with saturated potassium vapor will com-

plete the ceramic-to-metal seal investigations. Outgassing studies,

mechanical strength and leak tightness at elevated temperature will
complement the other invesHgations,
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a. FACILITY CONSTRUCTION AND CHECK-OUT

Construction of the facility for fabricating, loading and ezposure

testing in vacuum of test capsules with alkali metal has been com-

pleted. The first and second quarterly reports included photos,
diagrams and construction specifications and details.

The dual vacuum furnace equipment which will be used to carry

out the 500 and 2000-hour capsule exposure tests at 1000 and
1600°F was completed. A vacuum of better than 8 x 10 -10 tort

has been achieved with the equipment cold, dry and empty.

To date, three potassium loadings have been made in the vacuum

chamber for alkali-metal loading and electron beam welding. The

mechanical problems of jigging and fixturing to facilitate capsule
handling in the vacuum chamber have been resolved. The recent

effort has been in the direction of improving the loaded capsule
potassium purity.

The evolution of fixturing and techniques is reflected in the

reduced oxygen level in the second loading as compared to the

first loading. The lower oxygen in the third of three capsules
"t " O"loaded aurmo the second loading is largely attributed to flushing

the tip of the potassium line with a few drops of potassium just

prior to filling the capsule. The hot potassium (200°F) exposed

at the tip of the fill line reacted with the partial pressure of

oxygen in the loading chamber (vacuum approximately 4 to 6 x
10-o torr) during the time between capsule fillings (10 to 15
minutes) and evidently became contaminated. The 55.1 + 14.3

ppm oxygen probably represents the best loading possible with

the system, as of that time. On the basis of the above analysis,
it was decided that remedial action should be taken.

The potassium hot-trap container was returned to Mine Safety

Applimuce Corporation for oxygen analysis and refilling. The

analysis showed the potassium to contain less than i0 ppm oxygen.
Therefore, this was not a major contributing factor toward the

high-oxygen level in the loaded capsule.

The second significant procedure modification taken prior to the

third loading was the placement of polyethylene sleeves over the

vacuum manipulator fittings and handles and pressurizing them
with a continuous source of high-purity argon. This device does
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not hinder manipulator capability and assures a reduction in the oxygen
content of the gas by more than one order of magnitude if a leak should
occur in the manipulator seals during the capsule handling.

The oxygen analyses of potassium in the capsules filled during the third
loading indicated some improvement over the best results from the
second loading. This is attributed to the flushing of the potassium fill
line tip and to the use of argon filled polyethylene sleeves over the
manipulators.

The oxygen level which can be achieved in a test capsule loaded in the
vacuum loading facility remains questionable. A low oxygen level has not
been achieved on the basis of the neutron activation analyses performed
to date. However, the current neutron activation analyses have
sufficient built-in errors that they must be resolved before further
facility modifications are undertaken.

The potassium samples for neutron activation analyses are loaded into
stainless steel capsules supplied by General Atomics, Division of
General Dynamics Corp. The capsule material is assumed to contain
95 ppm oxygen, on the basis of a historical average by General Atomics.
Since the average capsule weighs 14 grams and the average potassium
sample weighs 4.5 grams, this means that, assuming 40 ppm oxygen
in the sample and 95 ppm in the capsule, 0.18 mg of oxygen must be
measured against a background of 1.33 mg of oxygen. The repro-
ducibility of the oxygen content in the stainless steel capsules is there-
fore critical. On at least one occasion (Capsule No. 3 of the third
loading) the total oxygen measured by neutron activation was less than
the assumed 95 ppm oxygen content of the capsule material.

In order that the neutron activation analyses of low--oxygen bearing
potassium be more accurate, the oxygen blank for the capsule should be
below 10 ppm and preferably near 5 ppm oxygen. One source has been
located for vacuum-melted type 304 stainless steel with oxygen content
at the 5-12 ppm level. It is available in heat-size quantities only
(i000 ibs. ). Westinghouse and Ein_lac are considering sharing the cost of
one I000 pound heat in the form of bar. In addition, the test capsules
from the third loading have been emptied and cleaned. After vacuum
firing, the oxygen content will be determined. The MSA Research
geometry stainless steel capsules (see the second quarterly report)
loaded with potassium at the same time have been sent to MSA Research
for mercury amalgamation analyses.

157



In the event the reported 40 ppm oxygen in the potassium is actually

much less, the facility will be considered satisfactory and capsules

for potassium exposure testing will be loaded. (Data obtained after the

fourth quarterly report reporting period has indicated loading with less

than 10 ppm of oxygen have been achieved as measured by MSA Research.)

b. CERAMIC OUTGASSING STUDY

Alumina and beryllia ceramics are normally fabricated by sintering the

appropriate materials in an oxidizing atmosphere for 1/2 to 3 hours at

temperatures in the 2700 to 3100°F (1500 to 1700°C) range. Dissolved,

chemisorbed and occluded oxygen-containing gases(H20, CO, CO2) are

therefore released by the ceramics during subsequent treatment or use

at elevated temperatures. The availability or presence of oxygen in

alkali metal accelerates its corrosive effect toward refractory metals.

The purpose of this study is to determine the species and amount of

gaseous oxygen compounds remaining in selected bore seal ceramics

(wall thickness 0.040 to 0. 100 inch) after various processing schedules.

Corrective action such as prolonged high-temperature vacuum firing

can be programmed if shown necessary by this study. The equipment

and methods employed in the outgassing study were described in detail

in the second and third quarterly reports. A block diagram of the equip-

ment is shown in Figure IV-l. The prepared samples are dropped into a

precisely controlled, pre-conditioned vacuum furnace held at the test

temperature. Selected m/e (mass to charge) ratios corresponding to

the predominant gases as well as the overall fluctuations in furnace

pressure are cyclically monitored. The pumping rate of the system for

each gas component is known and outgassing rates and total evolved gas

volumes can thus be com2uted. The sensitivity of the mass spectrometer
is approximately 2 x 10-_torr for nitrogen.

The residual bulk outgassing rates of similarly fabricated and sintered

ceramics will be similar. For this study, ceramic materials which were

representative of different.fabricating and sintering procedures were
chosen. The three materials selected for this series of measurements

are listed with the systems which they represent:

1) Sapphire, (Linde Co. ) single crystal 100 percent alumina;

flame fusion grown in an oxy-acetylene flame; no grain

boundaries, no voids, density 3.98 g/cc.

2) Lucalox, (G. E. ) polycrystalline 99.8 percent alumina; sintered

in hydrogen; with grain boundaries, but almost no voids;

essentially 100 percent theoretical density, 3.98 g/cc.
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3) Thermalox 998, (Brush Beryllium Co.) polycrystalline 99.8

percent bery!lia; sintered in air atmosphere electric kiln; with

grain boundaries and and voids; 95-98 percent theoretical density,

2.86 - 2.95 g/cc.

The beryllia and Lucalox are representative bore seal ceramics and the

sapphire is a control which will give an indication of the importance of

grain boundaries and voids to residual outgassing. These three materials

are not sintered in the same atmosphere.

Two outgassing temperatures and three different sample preparations were
selected for the study. The two temperatures were 1000°F and 1600°F.

The three preconditinning treatments were:

Precondition 1: After dye check and ceramic cleaning procedures. (See

.: the second quarterly report).

Precondition 2" After dye check and ceramic cleaning procedures plus
10 minutes at 1832°F (1000¢C) at less than 5 x 10 -_ torr.

Precondition 3 : After dye check and ceramic cleaning procedures plus

30 minutes at 2597°F (1425°C) in 75N 2 - 25H2 with 100 °

F dew point, .plus 10 minutes at 1832°F (1000°C) at less
than 5 x 10 -Otorr.

The preparations, consisting of cleaning, 1832°F vacuum firing and
2597°F 75%N2-25 % H2 firing, are normal cleaning and firing procedures

applied to all ceramics on this program prior to vacuum brazing. The

composition of the furnace gas present during the 2597°F firing in N2-H2

atmosphere is given in Table IV-1. The beryllia is fired in a special

furnace because of its toxic properties. The input gas to the two furnaces
was identical. The CO in the tunnel furnace is due to the reaction of water

vapor with the carbon boats along the length of the furnace.

The preconditioned samples were outgassed at 1000°F or 1600°F. The

outgassing continued for 20 minutes. The evolved gases were monitored

by a Bayard-A!pert-Ion gage and a CEC No. 21-612 mass spectrometer.
Quantitative determinations of the evolved gases can be made since the

pumping speed of the system for each gas is known. Total integrated
amounts of gas evolved from the various preconditioned ceramics are

summarized in Table IV-2. The sample surfaces areas and weights are
given in Table I V- 3.
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TABLE iv-1.

Furnace

Tunnel Furnace

Ram Furnace

Notes: (a)

Co)

Typical Compositions of Nitrogen- Hydrogen Gas

Atmospheres in Furnace Hot Zone During

2597°F Firing of Ceramics(a)

Gas Composition( b )

N 2 CO A + 0 2

0

H

0.85% balance

0.31% balance

,, _, , u , , | 4,,. , , , J.,,, ,, _ • ,.. ,

Alumina parts are fired in a tunnel furnace and the

beryllia parts in a ram furnace.

Averaged from data obtained with Burrell KROMO-
TOG Model #K2 gas chromatograph.

....... • .H i i
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The total evolved gas QT is expressed as 10 .4 torr li_ers of gas evolved

per gram of material. It is determined by first integrating the area under

the curve of the "system pressure versus time". The resulting quantity

is then divided by the time in seconds to obtain a mean pressure from

which the background pressure is subtracted. This difference is then

multiplied by the pumping speed of the system (one _/sec for N2). This

number is the evolved quantity of gas, which is divided by the sample

weight or surface area respectively, tQ give torr liter/gram or torr
liter/cm 2.

The total pressure outgassing plots as a function of time are given in

Figures IV-2, IV-3, IV-4 and IV-5. In Figure IV-6, the total pressure

outgassing curves for the three materials at 1600°F after dye check and

ceramic cleaning procedures (precondition 1) are shown.

The partial pressures of selected gases as well as the total pressure were

monitored on each outgassing run. The four specific gases monitored
were hydrogen (H, m/e = 2), water vapor (H20, m/e = 18), nitrogen and/or

carbon monoxide (N2, m/e = 28; CO, m/e = 28) and carbon dioxide
(CO2, m/e = 44). These components account for essentially all of the

evolved gases. This is confirmed by spot checks which showed that the

partial pressures add up to the total pressure within experimental error.

Methane (CH4, m/e = 16) was not monitored specifically, although it was

always measured due to its proximity to water vapor, m/e = 18, which
was monitored.

Partial pressure plots of representative gas determinations are given in

Figures IV-7 to IV-12. The major item of interest in this work is the

residual gas after reasonable vacuum processing. The partial pressure

plots are those of the tails of the third and last outgassing peak representing

bulk outgassing. The first two pressure peaks representing surface gas
disturbed in sliding the sample into the furnace and surface gas from the

sample itself occur within the first minute. During this time, the partial
pressure excursions are so rapid that only one m/e ration can be satis-

factorily monitored. The partial pressure monitored in all cases during
this time was m/e = 28. This m/e peak was monitored continuously for

the first 30 to 60 seconds of each run and the shape of the resulting curve

duplicated the total pressure curve. The shape of the m/e = 28 curve for

the first minute can therefore be checked by referring to the appropriate

total pressure curve presented previously in this report.
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FIGURE I V-7. Partial Pressure Curves of Outgassed Products For Sapphire
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at 1600 °F
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-44

0 5 10 15

TIME FROM SAMPLE DROP (MINUTES)

Horizontal lines indicate the furnace background pressure for the gas

with the designated mass number.

FIGURE IV- 12. Partial Pressure Curves of Outgassed Products for Thermalox

998 (99.8% BeO, density 2.86 to 2.95 g/cc) with Precondition

3, Outgassed at 1600°F
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The partial pressure curves have been smoothed out from the raw data and

the remaining inflections are considered real and significant. For example,
deviations from the normal uniform decay in pressure.are noted such as

the hydrogen peaks (m/e = 2) at 4 minutes on the Thermalox 998, in pre-

condition 3 on the (Figures IV- 9 and IVrl2) 1000°F and 1600°F curves.

Starting hackground levels for the individual gaseous components, just

prior to sarhple drop, are noted on the left hand margins of the figures
and by faint lines extending horizontally across the figures.

Table IV--2 shows that in all cases the total evolved gas from dye checked

and cleaned ceramics (precondition 1) was significantly reduced by vacuum

firing (precondition 2) and was reduced further when the vacuum firing was

preceded by firing the samples at high temperature (~ 2600°F) in 75% N_-
25% H 2 forming gas (precondition 3). The partial pressure curves (Figffre

IV-7, IV-8, and IV-12) show that after 20 minutes of outgassing at 1600°F,
all three materials in the precondition 3 form indicate pressures within
2 x 10 -8 torr of the furnace background pressure for each of the four mon-

itored mass-to-charge ratios. An extrapolation of these curves shows that

after an additional 20 minutes the partial pressures would fall below the

corresponding starting pressures in all cases.

The most significant gases remaining after 20 minutes outgassing at 1600°F

in all materials in precondition 3 are those with m/'e = 28. The water, vapor

(m/e = 18) is essentially down to background level and the hydrogen (m/e =2)

is of lesser importance since it is not a liquid alkali metal corrosion

accelerator. As stated previously, m/e = 28 represents nitrogen anc]/or
carbon monoxide. To resolve the question of the ratio of nitrogen to carbon

monoxide, it is necessary to measure other secondary m/e partial pres-
sures which are over an order of magnitude less intense and are there-

fore at the sensitivity limit of the equipment used. As a result, only
qualitative results were possible and these indicated a CO to N2 ratio of
approximately 7 to 1.

These data indicate that each gram of sapphire, Lucalox or Thermalox 998

which are given the treatment described as precondition 3 and outgassed at

1600°F for 20 minutes will evolve approximately 30 ug of oxygen (as Co)

during the next 20 minutes at 1600°F. If the evolved gas during the second

20 minutes is assumed to consist entirely of nitrogen, then approximately
80 ug will be released from each gram of ceramic.
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The evolved gases have been reported in units of gas per unit of weight
for the ceramics, since it is believed the bulk gases axe of more impor-
tance than the surface gases which can be removed from a completed
structure with a relatively simple bakeout.

If the mass of the ceramic in a space electric power system were equal
in weight to_the mass of the alkali metal, the liquid alkali metal would be
contaminated with 30 ppm oxygen or 80 ppm nitrogen, assuming the worst
case for potassium and lithium respectively (e. g. 30 _ g oxygen per gram
of ceramic transferred into each gram of alkali metal equals 30 ppm
contamination). Since practical systems usually contain at least 10 times
the mass of alkali metal than they do of ceramic, the contamination is
reduced to less than 3 ppm and 8 ppm respectively.

Therefore, the present ceramic preparation procedure of dye checking,
ceramic clean_hg (in detergent) and clean firing at 2500°F in 75% N2-
25% H2 is adequate iI precautions in subsequent processing are followed.

The vacuum brazing operation (which is of longer duration and takes place
at higher temperature than 10 minutes at 1832°F applied in the outgassing)
is adequate as a vacuum firing step without a prior vacuum firing. A
prior vacuum firing is useful only insofar as it permits the vacuum b.razing
operation to be carried out more rapidly.

Completed brazed assemblies should be stored in clean polyethylene bags.
Handling with bare hands should not be permitted. If handling, which,
contaminates the ceramic, is necessary, it will prolong the vacuum firing
of the completed system which must be carried out before the introduction
of alkali metal into that system.

The completed system (loop, generator, etc. ) should be vacuum outgassed
at the operating temperature (1600°F in the case cited) for the time required
to get the system pressure down to below 5 x 10-6 torr before introducing
liquid metal.
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C. BORE SEAL CERAMIC/_LATERIALS

A four inch beryllia bore seal containing potassium will be tested in a

generator stator on this program. The test will be conducted at elevated

temperature and under high vacuum. The final design is now being

reviewed. A four inch diameter, four inch long Thermalox 998 beryllia

tube with 0. I00 inch wall flared to 0. 250 inch at the ends has been ordered

from the Brush Beryllium Company. Delivery is expected in January 1966.

Studies reported previously (NASA-CR-50493) showed that sapphire

(Linde Co. ), Lucalox (G. E. ) and Thermalox 998 containing 80 ppm silica

(Brush Beryllium Co. ) retained their intrinsic strength and resisted

attackby potassium _ffAr 500-hour exposure tests at 1600°F. Since

actual bore seal ceramics will be required to operate for 10,000 hours

or more, prolonged tests (2,000 hours) are to be carried out on this

program. Additional ceramic bodies are to be tested for use in the event

that the above materials prove unsatisfactory.

Yttria and Thermalox 998_ both manufactured under special processes to

limit the content of silica and other thermodynamically unstable constituent

have been ordered from Coors Porcelain Company and Brush Beryllium

Company, respectively, in the form of modulus-of-rupture bars and

small cylinders.

The yttria ceramic has been delivered. The low silica Thermalox 998

was received from Brush. Samples of it and other lots of Thermalox 998

were subjected to neutron activation analysis. The neutron activation

did not agree with the Brush Beryllium spectographic analyses, showing

an excessive amount of silica. It has been returned for replacement and,

at this time, the subject is under negotiation. Table IV-4 summarizes

the analyses.

177



TABI.F. IV-4. Sihca Analyses (as si!icon) of Various Lots of Thermalox

998 Received from Brush Beryllium Co.

Silicon Content (ppm)

Supplier Lot Analysis (a)

30

70

150

Neutron Activation Analysis (b)

149 + 24

85 i 21

207 ± 26

(a)

(b)

Spectographic Analyses by Brush BerylLium Corporation,
Elmore, Ohio

Neutron Activation Analyses utilizing Si28 (_, p ) A128

Reaction by General Atomics, San Diego, California.
Two samples from each lot were run. The + values

represent one standard deviation estimated from counting

statistics only.
,, , L i ill |1_ , , , , H
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d. ACTIVE METAL BRAZING ALLOYS

The task of screening braze filler alloys for use in joining beryllia

ceramic to columbium-1% zirconium metal was continued during this

period.

Six braze filler alloys were investigated in order to select three alloys

for further evaluation by exposing to potassium vapor at 1600°F for

500 hours. The brazing data of the six braze alloys tested are given

in Table IV-5. The three braze alloys selected from the screening

are given below:

Alloy No. 5 - (46Ti-46Zr-4Be-4V) Brazing temperature 1832°F

.: (IO00°C)

Alloy No. 9 (60Zr- 25V- 15Cb) Brazing temperature 2436°F

(13300C)

Alloy No. 12 - (35Ti-35V-30Zr) Brazing temperature 2804°F

(1540°C)

The strength data inTable IV-5 does not include all the brazing results

because it was occasionally found that some joints in the same brazing

run were abnormally low in comparison with the general strength level.

It was possible to detect and reject the low strength brazed samples on

the basis of visual appearance prior to testing. The causes for rejection

were primarily due to faulty assembly which included misalig-nment,

faulty pressure application, or loss of braze powder. A smooth well

filleted braze was not possible in all instances, however, because certain

alloys were characterized by incomplete and uneven wetting. It is

probable that in these cases, the poor wetting could be alleviated by

using a metallic wetting layer on the beryllia ceramic. Some process

variations were carried out whenever the brazements appeared to be

less than optimum.

In addition to the braze filler alloy evaluations, several beryllia ceramics

were tested to obtain modulus-of-rupture strength of these bodies. The

tested ceramic pieces were the end portions of modulus-of-rupture

assemblies and had been ex-posed to the indicated brazing cycle as well as

normal ceramic preparation procedures. The latter procedure was

followed in order to include the possible influence of brazing temperature

exposure on ceramic strength.
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Braze alloy No. 2 (68Ti-28V-4Be) was the only braze all_y of the six

tested that contained no zirconium. The average modulus-of-rupture

strength was 17,465 psi. On the deficit side, the braze alloy showed

poor wetting, forming isolated droplets, and had an average tab peel

strength of only 9 psi. Of the six alloys tested this alloy showed a

leakage incidence second only to that of alloy No. 10. The poor
wetting was due in part to an increase in surface tension and melting

point due to the loss of beryllium by volatization. The vapor pressure
is reported (ref. 1) to be near 10 -_ torr at 2239°F (1226°C) which is

less than the brazing temperature 2372°F (1300°C). Volati-.ation is

not necessarily detrimental since it is a conventional method of

raising the melting point of a braze by removing a melting point

depressant, in this case, beryllium. The volatization could be in-

hibited by brazing in an inert atmosphere, although contamination by

reactive gases: would be greater than that encountered in vacuum

brazing. It is also possible that wetting and liquid spreading could

be improved in this case by metallizing the ceramic or altering the

braze cycle.

The low average tabpeel strength for the 68Ti-28V-4Be braze alloy

was apparently related to poor wetting of both the metal and ceramic.

It was noted that an increase in applied pressure during brazing

improved the peel strei_gth slightly. It is possible that the low tab

peel strength is indicative of the presence of a brittle layered phase,

since a brittle layer would be conducive to crack propagation. It is

planned to keep the 68Ti-28V-4Be braze as a back-up alloy.

Braze alloy No. 5, the 46Ti-46Zr-4Be-4V alloy, was particularly

promising for bore seal applications in the 1000 to 1400°F tempera-

ture range because of its excellent wetting and relatively low brazing

temperature (1832°F). In addition, one specimen had a tab peel strength
of 53 lb/in, which was slightly higher than the 50 lb/in, encountered

thus far. Like alloy No. 2, this alloy contains beryllium which would

be expected to form a suitable joint with the beryllia. This alloy will
be further evaluated by potassium exposure testing.

Braze alloy No. 9 (60Zr-25V-15Cb) was selected for potassium exposdre

testing over alloy No. 6 primarily on the basis of its lower brazing
temperature 2436°F (1330°C)versus 2516°F (1380°C). The

lower brazing temperature of alloy No. 9 is due to the lower columbium

content. A low brazing temperature is desirable because various tech-

nical difficulties increase with an increase in brazing temperature. In

addition, the average tab peel strength was 34 lb/in, and was the highest

of all six alloys tested. In general, the braze alloy appeared to form a

very satisfactory brazement. All leak test cylinders were vacuum tight.
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Although preliminary test results using alloy No. 10 (50Zr-30Ti-20V)

were very satisfactory, more recent results were not. The earlier

average modulus-of-rupture stren_h was near 25,000 psi as opposed

to a more recent value of 15,225 psi. The average tab peel results

were similarly reduced from 49 lb/in, to 21 lb/in. Neither of the two
cylindrical assemblies which were made in the first run was vacuum

tight. This alloy will not be subjected to potassium exposure testing.

Braze alloy No. 12 (35Ti-35V-30Zr) was selected for potassium ex-

posure testing because it exhibited the highest average modulus-of-

rupture stren_h (24, 437 psi) of the six alloys tested. In addition, in

the test assemblies, the beryllia ceramic was coated with an evaporated

molybdenum layer to promote wetting by the braze alloy. However,

the brazing temperature 2804°F (1540°C) was the highest of the alloys
tested and.may be a prohibitive factor in making large assemblies

because of distortion arising from relief of thermal stresses.

Program For The Next Quarter

a) Complete 1600°F potassium exposure test of active metal-brazed
ceramic -tO- metal assemblies.

b) Work on alternate seals particularly the application of metallic

layers on ceramics by ion plating and chemical vapor deposition.

c) Complete design of special test equipment for the high temper-
ature testing of ceramic-to-metal seals.
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B. TASK 2 - S'rATOR AND BORE SEAL

I. Summary of Technical Progress

a) Stator model manufacturing and assembly was completed.

b) Following assembly, the stator was given a 50 hour outgassing

bake-out at ll00°F in a liquid-nitrogen-trapped diffusion-

pumped vacuum furnace.

c) Thermocouples were installed in the stator after the out-

gassing bake-out and then the stator assembly was installed
in the thermal vacuum chamber.

d) The logging of official endurance time at an ll00°F hot spot

temperature began on November 19, 1965.

e) Minimum celd chamber pressure attained after system bake-
out was 1.1 x 10 -10 torr. Chamber pressure when official
endurance time was st_trted was 4.2 x 10-7torr. This pressure
increased to 6.4 x 10 -'t torr as final temperature stability in

the stator _as attained, and then began to decrease slowly.

f) Final dimensions for the BeO bore seal tube and end plates

were established with Eitel-McCullough.

2. Discussion

a. STATOR PHYSICAL AND ELECTRICAL DESIGN AND CON-

STRUCTION

Figure IV-13 is a cutaway view of the stator assembly which shows

the primary features of the design. The main frame is made from a

Hiperco 27 (27% cobalt-iron) alloy forging, and the laminations are

held in place in the frame by a retaining ring which is also made from

a Hiperco 27 alloy forging. The magnetic stack consists of Hiperco 27

alloy laminations 0. C08 inch thick, with a sapphire-like insulation

coating of plasma-arc sprayed Linde A compound (99. 995% A1203).

Conductor wire is nickel-clad silver (20% nickel cross-section)

coated with a 0. 006 inch thick layer of Anadur, a refractory-oxide-
filled E-glass fiber. Slot insulation is provided by ceramic

(99% A1203)U-shaped channels (slot liners), spacers and wedges.
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THERMOCOUPLES

WINDING

MAGNETICSTACK
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_INSULATING TUBES

FIGURE I V-13. Cutaway View of Stator Without a Bore Seal
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W-839 zirconia-base potting compound is used to fill3mall voids

between the slot liners and the slot_, and extends about 3/8 inch

beyond the slot liner ends to provide winding support. Hollow cerami3

tubes (99_o A1203) are used as thermocouple insulators in the slot and

stack areas. Two thermocouples are installed in slots in each

winding." Additional pairs of thermocouples are located in the stack,

between the stack OD and the frame, on the OD of the frame and on

winding end turns. End bells are m_de from Hastelloy Alloy B,

which is a non-magnetic material having a thermal expansion co-

efficient very similar to that of Hiperco 27 alloy. Average thermal

expansion coefficient for Hiperco 27 from 72°F to II00°F is 6 14 x

10-6 inch/inch - °F, while the coefficient for Hastelloy Alloy "B from

72°F to 1200°Fis 6.7 x 10 -6 inch/inch - °F.

The lamination stack is representative of one of the two stator stacks

of a 15 KV:A, 12,000 rpm inductor generator and of the statcr for a

12 horsepower, 12,000 rpm induction motor. The laminations have

36 teeth and slots which are proportioned approximately the same as

those of an operating generator or motor. The a-c stator _nding is

similar to that in a three phase generator or motor. The winding is

divided into three sections of twelve turns each, and the overlapping

of the sections is similar to that which occurs between the pha_es of

a generator or motor winding. Thus, it is possible to test the stator

with a potential between windings and from winding to ground, the

sRme as in an operating generator.

• !

Rated frequency of the stator for design and test purposes is 400 cps

to insure the availability of a reliable laboratory power supply for

endurance testing. However, the stator could be tested at fre-

quencies up to 1600 cps and higher, if required. The loss in the

stator when current is passed through the winding is the I2R loss

plus a small amount of core loss. At frequencies higher than 400 cps,

there will be a slight increase in losses, but at 1600 cps this increase

will be less than 10 percent.
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b. STATOR ASSEMBLY

After completion of all shop operations such as machining, punching,

welding, plasma-arc spray and annealing, the detail stator parts

were cleaned according to the cieaaing specification_ included in

Appendix B of the third quarterly report. The only material not
cleaned was the Anadur coated nickel-clad silver wire.

The stack was formed on a stacking arbor using 244, 0. 003-inch thick,

Hiperco 27 laminations with plasma-arc sprayed A1203 on one side of

each lamination. The laminations were squeezed together by a 509
pound load and secured on the arbor. Total stack height after com-

pression was 1. 980 inches, giving a calculated nominal A1203 layer
thickness of 0. 000117 inch/lamination. Weight of the laminations

was 12.6 l_ounds. The frame was heated to approximately 400°F

and the stack was seated into place. After the frame had cooled to

room temperature, the retaining ring was bolted and pinned in place.

The stacking arbor was then removed from the stack. Figure IV- 14

shows the lamination stack installed in the frame with the retaining

ring in place and the arbor removed (left assembly). The stack on
the right side is the practice stack, showing one of the practice

enamel covered copper wire windings in place. The cleaned tools in
the foregound give some idea as to stack size. The stator frame

outside diameter is eight inches. This picture was taken with the
equipment sitting on the "clean" bench work table. Filtered air is

blown across the work area from the filter bank visible in the upl_er

part of the picture. Once parts had been cleaned, all further work on
them was done at the clean bench, which provides a monitored

atmosphere equivalent to or better than a Class 10,000 clean room as

defined by Federal Standard No. 209, "Clean Room and Work Station
Requirements, Controlled Environment".

Final coil forming procedures were developed using the Anadur in-

sulated nickel-clad silver wire. Figure IV-15 shows the operator
forming a winding with the test wire in front of the clean bench. The
stiffness of the wire required shaping each coil to the installed radius

prior to installation in the stator. W-839 potting compound was used

to anchor the A!203 slot liners in the stack slots and to hold the A1203
thermocouple tubes in place. Figure IV-16 shows the windings in-
stalled in the stator prior to the Anadur insulation system bake-out
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FIGURE I V-14. Test Stator Stack and Practice Winding Stator Stack
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FIGURE I V- 15. Operator _'orming a Winding With Test Wire in Front
of the Clean Bench
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TUBES

__IGURE IV-16. Test Winding Installed in Stator Prior to Anadur Bake-Out



cycle. The slot thermocouple tubes in one windingare indicated by
arrows. The potting compound was baked out in air according to the
following schedule:

Temperature
(°F)

Room Temperature

125

150

190

220

35O
450

Time

(hours)

Overnight

1
1

2
2
2
2

This wa§ followed by a bake-out and cure cycle for the Anadur in-

sulation. This operation was carried out in air to the following time

and temperature schedule.

Temperature
(°F)

350
550- 600

750 - 800

1250 • 25

Time

(hours)

2

16
4

1/2

Additional potting compound was added to the windings where they ex-
tended from the slot liners (approximately 3/8 inch out from the stack)

and to hold alumina thermocouple tubes to four winding end turns.

Thermocouple tubes were also added to the stack bore and in the
lamination outside diameter marker slot. The stator was then put

through another potting compound cure cycle.

The two Hastelloy Alloy B end bells were added to the stator assembly,

along with the frame OD thermocouple retaining plate. Figure IV-17
shows the completed stator, except for the installation of thermocouples,

sitting on three posts which were used to support the stator on the hearth

plate in the thermal vacuum chamber. The discoloration of the stator
frame occurred during the Anadur insulation bake-out period at 1250 ±

25°F in air. Stator assembly weight less thermocouples was 39.0

pounds.
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FIGURE I V-17. Stator Assembly on Furnace Supports

1_1



The stator assembly less thermocouples was install_d in a liquid-

nitrogen-trapped diffusion-pumped vacuum furnace for a l;reliminary

degassing bake-out. After an equilibrium furnace temperature of

1100°F was established, the stator assembly was baked for 50 hours.

Initial chamber pressure at equilibrium was 9.0 x 10 -6 torr. At the

end of 50 hours, the pressure had stabilized at 5.3 x 10 -6 tort, at which

point the furnace was turned off. After cooling down, the furnace
pressure was 3.1 x 10 -6 torr. The furnace chamber was back-filled

with argon and then, for temporary storage, the stator was transferred

to an argon filled bag containing dessicant envelopes, pending completion

of a residual gas analysis scan on the No. 1 thermal vacuum chamber.

C. THERMOCOUPLE SYSTEMS

Thermocouples were positioned in the stator just before installation

in the thermal vacuum chamber. Figure IV-18 shows the thermo-

couple dimensions. The reduced tip diameter version was used in

the stator slots where space was at a premium. The wire system

used was the Platinel I I, a platinum-paladium-gold alloy manufactured
by Engelhard Industries, Inc. The wires were encased in an Inconel

sheath with 99% A1203 insulation between the wires and between wires

and sheath. The thermocouple junction was isolated from the tip
closure and the cold end terminals were vacuum sealed to the sheath.

Before being shipped by the vendor, each thermocouple _s pressur-

ized externally with helium at 2000 psig, then leak checked with a mass

spectrometer. This operation was followed by five thermal cycles to
750°F and individual thermocouple calibration. The welded thermal

junction was also radiographed in two views 90 ° apart and perpen-

dicular to the thermocouple axis. Except for the stator outside diameter

thermocouples, each one was installed in an alumina tube in the stator

to provide extra electrical insulation.

The vacuum chamber feedthroughs included one with a ceramic disc

carrying 20 brazed-in hollow Kovar tubes having an inside diameter

of 0. 040 inch. After the stator assembly had been installed in the

thermal vacuum chamber, each thermocouple was threaded out through

a Kovar tube. An induction-brazed leak tight joint was formed between

each thermocouple and its Kovar tube outside the furnace. Unused

tubes were pinched off and sealed. This design resulted in a sealed

thermocouple system with only the temperature junction located in-

side the thermal vacuum chamber. Thermocouple locations in the

stator are discussed in Section IV. B. 2. g.
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Isolated Thermocouple

_ Junction End

._Welded Closure . Sealed Closure --

0.026 + 0.001 in.dia. 0.037 + 0.001 in.dia.

4_-----3.5 + 0.5 _ _A

I lull I

Bare Wire Terminals__

0.25 Min._

36.0 + 1.0

L

A - Dimension as required for forming operation -

1.0 inch maximum. OD surface must be continuous

thru transition.

NOTE - Thermocouples are to be kept straight at all times.

Westinghouse Dwg. Ref. No. EDSK 326795

i

Isolated Thermocouple Bare Wire Terminals--
Junct ion End

Insulating and

Welded Closure Sealed Closure--]
!

Inconel Sheath 99% AI203 I

0.037 + 0.001 in. dia7 f Insulation )

- ,  _Jl
--'-_" _ _ Platinel II Wire Syst _ n

h_Isolated Junction _ old. I

_- Welded Closure 0.25 Min. _

I

360+10

NOTE - Thermocouples are to be kept straight at a] 1 tim_s.

Westinghouse Dwg. Ref. No. EDSK 326796
i i i I

FIGURE IV-18. Single and Dual Diameter Sheathed Thermocouples

(Reference: VTestinghouse D-Spec No. 709747)
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d. THERMAL VACUUM CHAMBER INSTALLATION

The Varian No. 1 thermal vacuum chamber _as evacuated in a clean, dr;-
and empty condition and put through a 24 hour bake-out at 482°F (250°C).
Residual gas analysis scans were taken with the chamber at 77°, 1100°
and 1500°F tb obtain background data. The chamber was then brought up to

ambient pressure under argon preparatory to installing the stator assembly.

The clean bench was positioned in front of the chamber to serve as a work

bench for the stator and to supply a filtered air flow across the chamber.

Figure IV-19 is a cutaway drawing of the thermal vacuum chamber which
shows the stator installed in the furnace hot zone. The chamber is of double

wall construction with baffles between the walls to channel cooling water

flow. The chamber top cover is also double walled to provide a path for

cooling water. Thermocouples were installed in the stator at the clean

bench, the stator support posts were bolted to the furnace hearth plate,
and the stator was set in place on the posts inside the chamber. The stator

winding leads were inserted in short lengths of hollow alumina tubing to in-

sulate them as they passed through the top heat shields. Thermocouples

and winding leads were then passed upward through perforations in the top
heat shields, and the shields were set in place. The winding leads were

brazed to OFHC copper feedthrough bus bars inside the furnace, using a bell

jar with supporting frame and foil curtains to maintain an argon atmosphere

for the brazing operation. Thermocouples were passed through the hollow

Kovar tubes and brazed externally. Thermocouple and winding lead integ-

rity was verified and the chamber was closed, evacuated and leak checked.

e. STATOR TEST CIRCUITRY

Figure IV-20 is a schematic sho_ng the test circuitry for applying power
to the stator windings. Three-phase power from a 400 cps, 292 volt a-c

line-to-neutral generator capable of 312 KVA, is supplied into the test area
through a 50 amp fuse in each phase. Voltage between phases is 505 volts

a-c. Two three-phase reactive load banks are connected in phase series with

each stator phase outside the test chamber to simulate the electrical load

that normally would be supplied by a conventional generator. Each load bank

has multiple taps to permit adjusting each phase current to the desired valve.

Reactive loads are used rather than resistive loads so that stator winding

current densities (amp/square inch) can be maintained at typical generator

values _-ithout dumping an excessive amount of heat into the laboratory area.

Thermocouple leads are not shown in the schematic, but they were con-

nected to a Honeywell multi-point recorder which can be set up to sequence

readings continuously or on a timed cycle basis.
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Phases

c I

II

Thermal Vacuum
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m m m _m_

!
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Figure IV-21 shows two Varian thermal vacuum chambers and a

three element Varian Vac-Sorb roughing pump cart. Residual gas

analyzer magnets and sensing elements are shown in their temporary

position at each furnace. The stator assembly was installed in the

furnace on the left. Figure IV-22 shows the control consoles for

the two chambers. The residual gas analyzer is shown on the roll

table to the left of the consoles.

f. STATOR TEST PROCEDURE

After electrical continuity of the winding leads and thermocouples was

verified, the thermal vacuum chamber Wheeler flange was installed.

The chamber was pumped down to appro_mately six microns and

the ion-pump was started. Several titanium sublimation pump bursts

were used to bring the chamber pressure down to the 10-6 torr range

as indicated by a nude ion gauge. Thermocouple brazed joints were

leak checked with helium and several joints required additional sealing.

The titanium sublimation pump was then cycled, 40 seconds on, in-

cluding warmup time, and 85 seconds off, for a nine hour period. System

pressure continued to decrease after the leaks were sealed, and when the

pressure reached a value of 3 x 10 -8 torr, a 32-hour bake-out at 482°F

(250°C) was started. The minimum cold pressure reached after bake-

out was 1.1 x 10-10 torr. As mentioned earlier, residual gas analysis

traces were taken with the chamber under vacuum at ambient temper-
ature and at 1100 ° and 1500°F before the stator was installed. Additional

traces were taken after stator installation at various stages of increasing

stator temperature and corresponding chamber pressures. Traces are

discussed in Section I V. B. 2. g.

Bench test static electrical measurements covering conductor resistance,

d-c insulation resistance and a-c potential electrical leakage had been

taken prior to installation of the stator in the chamber. (See Section IV.

B. 2. g for data tabulations). These measurements were repeated at a

cold chamber pressure of 1.1 x I0-10 tort to provide base line data under

high vacuum condition's. Chamber pressure subsequently dropped to a

minimum value of 8.2 x i0-11 tort before power was applied to the stator

windings.

A current of 31.2 amps was applied to each winding with no furnace

heater element power. When the average stator slot temperature

reached a near-stable value of 450°F, static electrical tests were re-

peated. The average slot temperature (four thermocouples) leveled

off at 451 ° F and a chamber pressure of 4. 6 x 10-10 torr. With the

stator winding current held constant, 400 amperes at 1.0 volt a-c was

applied to the furnace heater element. This power setting turned out to
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FIGURE IV-21. Two Varian Thermal Vacuum Chambers and a Three
Element Varian Vac-Sorb Roughing Pump Cart
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be at the low end of the automatic temperature controller range, and

current fluctuations were troublesome. Furnace power was sub-

sequently increased to 440 amps at 1.4 volts which improved the con-

troller stability. A set of static electrical readings was taken at a

stable average slot liner temperature of 985°F.

The furnac_ power setting was maintained constant at 616 watts and the

stator winding current was increased to 35.6 amperes per phase. In

approximately 18 hours, all the stator thermocouples were showing

stable readings, with a hot spot reading of 1040°F. Winding current

was increased to-41.2 amperes per phase with furnace power held con-

stant at 616 watts. When the hot spot temperature (average of four slot

liner readings) reached 1092°F and was approaching stability, the logging
of official endurance time at temperature was initiated.. Static electrical

measurements were taken when the hot-spot temperature reached 1098°F.

Endurance time accum,_'lated in the last month of the fourth program
quarter amounted to 172 hours.

g. DATA EVALUATION

The primary purpose of this test is to evaluate generator materials under

high-temperature and high-vacuum conditions. Power losses associated

with a conventional generator should be duplicated or synthesized when

testing a stator only, if the materials evaluation data is to be useful for

generator design.

Winding joule heating (I2R) losses in a conventional machine can be dupli-

cated in the stator. The test current being used gives a phase current

density of 41.2 amperes divided by a conductor cross-section area (silver

and nickel) of 0.0123 square inches, or 3350 amperes per square inch.

Higher current densities are used in stationary and aircraft type genera-

tors, but the increase in conductor resistance with increased wire temperature
must be considered. The I2R loss in the test stator is comparable to that
found in a conventional machine.

Another power loss associated with a conventional generator is magnetic

core loss. In a stator alone, the core loss is less than in an operating

generator, because it is not possible to have normal flux density without
a rotor. Reduced core losses and other minor losses that could not be

duplicated in the stator alone are compensated for by additional heat
supplied by the furnace heater element.

The heater element serves a second function, in that it is the primary
radiation shield that establishes the desired hot spot test temperature.
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Figure IV-23 is a plot of thermal vacuum chamber nude ion gauge pres-
sure against time, from start-up of the ion pump after chamber evacua-
tion until stator hot-spot temperatures became stable and official en-
durance time was started. The first 65 hours after pump-down were in-
volved in leak checks and in putting the system tl_rough a 32 hour bake-
out cycle at 250°C. Chamber pressure decreased slowly during bake-out

and at a more rapid rate during the cooling down period. For the next

45 hours, chamber pressure was pulled down using the ion pump only.

Several leak checks were made during this period. At approximately

110 and 115 hours, titanium sublimation pump bursts (TSP) were applied

to help establish a base pressure level. The ion pump was turned off

briefly at 133 hours so recorder control jacks could be attached to the
back of the ion pump control unit. This shutdown resulted in a 2-1/2

decade pressure burst, but recovery was rapid when the pump was

turned back on. At 136 hours, a current of 41.2 amps at 290 volts a-c

was applied to each stator phase winding. After 2-1/2 hours, the average
stator slot temperature (average of four thermocouples) has risen to

303°F and did not show any indication of leveling off. Stator power was
shut off and reapplied the next morning (155th hour). When slot temper-

ature reached 400°F, the stator power was shut off briefly to adjust the
load banks for phase currents of 31.2 amps per phase. The slight drop

in slot temperature which occurred while the power was off shows as a

small and temporary decrease in chamber pressure. Slot temperature

leveled off at 445°F and chamber pressure rose slowly with time to a
value of 1 x 10 -9 torr (200th hour). Two titanium sublimation pump

bursts were followed by a brief stator power shutdown to obtain stator
electrical measurements. In the 209th hour, 400 watts of power was

applied to the chamber heater element. Chamber pressure rose quite

rapidly and a titanium burst was used to speed up stabilization. In the

212th hour, an unplanned heater element power excursion occurred which

caused a further chamber pressure increase. Heater power was reset to
616 watts and the furnace control was shifted from manual to automatic.

A low "on" time TSP cycle was initiated to help reduce chamber pressure.
At 288 hours, stator power was shut off for electrical measurements.

This was followed by a winding current increase from 31.2 amps to 35.6

amps. The pressure rose as the average stator slot temperature in-

creased. In the 307th hour, the stator phase winding current was increased

to 41.2 amps per phase, which was the planned test value. When the

average stator slot temperature reached a value of 1092°F, official en-
durance time was started.

Figure I V-24 is a plot showing chamber pressure vs. time during the

172 official test hours completed in the fourth program quarter. The

points which were plotted were for stable conditions, to show the trend
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of pressure level with time. Brief pressure transients were introduced

from time to time by applying titanium bursts, which caused a rapid

pressure reduction of as much as a decade. In every case, the pressure

increase was as rapid as the _'eduction, as soon as the titanium was

used up., with no apparent change in the existing stable pressure level.

Table I V-6 is a tabulation of electrical measurements taken at various

times as the stator assembly was completed and then brought up to

temperature in the thermal vacuum chamber. The conductor resistance
increased approximately 2.5 times in going from room temperature to

an average slot temperature of 1098°F. The conductor insulation re-
sistance improved considerably, both phase-to-phase and phase-to-

ground, in going from room ambient pressure and temperature to high

vacuum at room temperature. The a-c potential test leakage current

also showed a marked reduction in going from room ambient to vacuum

conditions. The major reason for these changes was the elimination of

most of the water vapor v,'hich was present during bench testing. The

first set of vacuum readings was taken after system bake-out at 482°F
(250°C). The insulation resistance decreased as the stator temperature

was increased. The a-c leakage current increased as stator temperature

increased. All these electrical tests will be repeated on a regular basis

to observe changes in operation at high-temperature and under high-
vacuum conditions.

The calculated winding I2R loss at 1098°F is 61.2 ohms per phase, or

183.6 ohms total for the stator. This is based on a winding current of

41.2 amps per phase and a resistance of 0. 036 ohms per phase.

Figure IV-25 is a sketch showing the location of thermocouples in the

stator. Sixteen thermocouples were installed before the stator was put

into the thermal vacuum chamber. Six were lost during installation,
primarily because of difficulties in obtaining good induction brazed joints

between the thermocouples and Kovar tubes in the 20-tube chamber feed-

through. Changing fo an 8-tube feedthrough on the second test has

eliminated most of these difficulties. Pairs of thermocouples had been

installed at each location as a precaution in case of installationproblems,
and each sensing location has at least one good sheathed thermocouple.

Table I V-7 is a tabulation of temperature distributions that occurred as

stator _vinding current was increased and power was added to the furnace

heater element. The table also covers the first 172 hours of endurance

time. For every condition shown, the stator slot thermocouples re-

corded the highest temperatures. It had been anticipated that winding

end turn temperatures would be nearly as high as slot temperatures.
Radiation frown the end _urns to th_ furn_.ce top heat shield_ is sufficient
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Legend - Page 207

FIGURE IV-25. Stator Cross Section Showing Thermocouple Locations

and Junction Positions
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KEY TO FIGURE IV-25

NO.

2

3

4

5

Qty.
Installed

6

2

2

2

4

Description

Slot Liner - 2 per phase

"B" Phase Thermocouple lost
during assy.

Stack Bore Tube

Lamination - Frame Slot

One lost during assy.

Frame OD

One lost during assy.

"B" and "C" Phase End Turns

"B" phase lost during assy.
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to reduce temperature by approximately 30°F at the ll00°F hot-spot

operating temperature. The frame outside diameter temgerature was

higher than the end turn temperature because the frame is radiating

primarily to the furnace heater element rather than to unpowered

heat shields. The first line of the data, taken before power was ap-
plied to the furnace element, shows a A T of 36°F between slot and

frame outside diameter. Further temperature distribution analysis
and an effort to calculate heat flow and heat transfer coefficient from

the slot will be included in the next quarterly report.

Analysis of the residual gases in the stator chamber, as well as the

chamber used for the transformer and solenoids in Tasks 3 and 4,

was conductcd using a Consolidated Electrodynamic Corporation Model

21-614 residual gas analyzer (RGA). Two analyzer tubes were used,
one connected to each chamber. Traces of peaks in the mass range

from 2 to 150 were obtained for furnace atmospheres at different

temperatures and pressures. As mentioned previously, RGA peak

traces were obtained with the furnaces empty at temperatures of 77 °,
1100 ° and 1500°F. The test specimens were then installed in their

respective furnaces and residual gas mass peak traces were taken at

temperatures up to the ll00°F hot-spot level, with the specimens ener-
gized and non-energized.

The residual gas mass spectra obtained are complex in some scans.

A computer matrix program is presently" being programmed to identify

and assign values to the mass peaks observed. The principal mass
peaks contributing to the total pressures measured on the chamber nude

ionization gauges are due to CO2 , N2, A, H20 , and H2. Masses be-
yond the 44 m/e of CO 2 indicate the presence of some organic materials.

The occurrence of the higher masses necessitates a more thorough
mathematical treatment before numerical partial pressure values can
be assigned.

3. Program for Next Quarter

a) Continue the stator endurance test w_h a hot spot temperature of
ll00°F.

b) Develop a residual gas analysis com_uter matrix to better identify
constituents.

c) Work on a stator heat flow model wiff,hin the limits of temperature
instrumentation.
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d}

e)

Review the stator design for changes needed in a 1400°F hot-

spot stator model.

Review the bore seal and 1400°F stator designs for comratibility.

Begin construction of a 1400°F stator model.

210



C. TASK 3 - TRANSFORMER

1. Summary of Technical Progress

a) Transformer model manufacture and assembly was completed.

b) After assembly, the transformer was given a 43 hour outgassing

bake-out at ll00°F in a liquid-nitrogen-trapped diffusion-pumped
vacuum furnace.

c) Thermal vacuum chamber installation of the transformer was

completed and chamber pump-down and bake-out were carried
out.

d) Minimum cold chamber pressure attained after system bake-out
was 4. 6 x 10-10 torr.

e) Base line transformer electrical measurements and chamber

residual gas analysis scans were obtained.

2. Discussion

a. TRANSFORMER PHYSICAL AND ELECTRICAL DESIGN AND

CONSTRUCTION

Figure IV-26 is a cutaway view of the transformer which shows the

basic design features. The core is made from E-I style Hiperco 27

alloy laminations 0. 008 inch thick, with plasma-arc sprayed alumina

(IAnde A- 99. 995% Al203) as the interlaminar insulation (same as
used on stator laminations). The windings are formed around a ceram-

ic 99.5% A1203 spool which provides insulation between the windings

and the center leg of the core. Alumina end plates and channels pro-

vide insulation between the winding ends and sides and the laminations.

Non-magnetic alloy s.trips are used outside the laminations to provide

lamination support. The laminations and support strips are held together
by through-studs, ceramic washers and lock nuts.

Pairs of thermocouples are installed between the primary winding and
ceramic spool and between the two windings. The stack has been divided

into two halves by ceramic strip spacers so that thermocouples can be
buried in the core.

The transformer design is rated at 1 KVA at 400 cps with 600 volts on

the primary and approximately 30 volts on the secondary. A frequency

of 400 cps was chosen because of the availability of 400 cps power for
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lab testing, and because Hiperco 27 alloy was available in 0.008 inch

thickness only, a thickness best suited for 400 cps. The tr2nsformer

can be operated at higher frequencies with little change in losses pro-

vided the voltage is maintained at rated value. This 600 volt a-c

single-phase design is representative of the technology for a three-

phase transformer having the same phase voltage which, when coupled
in a wye network with a full-wave rectifier system, would provide
1400 volts d-c.

b. TRANSFORMER ASSEMBLY

When all shop operations had been completed, the transformer parts

were cleaned according to the cleaning specifications included in Ap-

pendix B of the third quarterly report. The only material not cleaned
was the Anadur coated nickel-clad silver wire.

The first transformer subassembly required was the winding spool.

Figure IV-28 shows the 99% alumina spool, alumina end plates, alumina

thermocouple tubes and the primary and secondary windings in place.

The end plates were attached to the spool by means of Pyroceram #45

cement, a nucleating glass that fuses at approximately 1225 °F and

changes to a polycrystalline structure at 1400°F. The spool subas-

sembly was fitted to a rectangular winding arbor to provide support

for the ceramic spool and end plates during the winding operation.

The primary winding was wound by hand using 0. 032 inch diameter
nickel-clad silver wire coated with Anadur insulation 0.006 inch thick.

The winding consisted of four layers with 37 turns in each layer plus one
layer with 26 turns. Winding layers were separated by 0.010 inch

thick layers of 3M Company Burnil CM-2 flexible sheet insulation which

is a synthetic fluorophlogopite mica paper. Four layers (0.040 inch

total) were used between the primary outer layer and the secondary

winding. The secondary winding consisted of one 10 turn layer of
0. 144 inch diameter nickel-clad silver wire with a 0.006 inch thick

coating of Anadur insulation. The large outside diameter ceramic

thermocouple tubes (99% A1203) were wound in place inside the inner-
most primary winding layer and the smaller tubes were installed at

the secondary winding inside diameter.

E-I core form Hiperco 27 laminations 0. 008 inch thick were plasma-

arc sprayed with alumina (IAnde A) on one side prior to assembly into

the stack. This is the same interlaminar insulation system that was

used on the stator laminations with a coating thickness of approximate-
ly 0. 0001 inch. Figure IV-28, which was taken after the Anadur in-

sulation bake-out, shows the laminations installed in the winding as-
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FIGURE IV-28. Transformer Assembly Less Thermocouples
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sembly. The stack consisted of 230 lami.,miions divided into two sections

by alumina spacers and thermocoul_ie tubes. Hastelloy Alloy B plates
0.063 inch thick were used on each side of the stack to provide stiff-

ness. Through-studs, alumina washers and nuts were used to hold

the stack together. The studs were plasma-arc sprayed with alumina

insulation (Linde A) and the nuts were heliareed to the studs after

assembly. The weight of laminations built into the stack was 5.75
pounds. Total transformer weight was 8.47 pounds.

Alter assembly, the transformer was put through an Anadur insulation
bake-out using the same time-temperature schedule as was used for

the stator. Following this, a small amount of W-839 potting compound

was added at the stack midpoint to retain the alumina spacers and

thermocouple tubes. Potting was baked-out according to the same

schedule used for the generator. Figure IV-29 shows some of the

potting details and also shows the transformer resting on the frame

which supports it in the thermal vacuum chamber.

The transformer assembly less thermocotrp!es was installed in a liquid-

nitrogen-trapped diffusion-pumped vacuum_ furnace for a preliminary
degassing bake-out. The two solenoids covered under Task 4 were put

through the same bake-out. Alter an equilibrium furnace temperature

of l l00°F was established, the ass emblies were baked for 43 hours.
Initial chamber pressure at equilibrium was 4 x 10 -6 torr and at the
end of the bake-out it had decreased to 2.6 x 10 -6 torr. Alter cooling

off, the furnace chamber was back-filled with argon and the assem-

blies were stored this way until installation in the thermal vacuum
chamber.

c. THERMOCOUPLE SYSTEM

Thermocouples were positioned in the transformer just before installa-

tion in the thermal vacuum chamber. The same thermocouple system

used with the stator was used with the transformer including the
vacuum chamber hollow Kovar tube feedthro_ghs.

d. THERMAL VACUUM CHARIBER INSTALLATION

Residual gas analysis scans were taken with khe Varian No. 2 thermal

vacuum chamber evacuated and at chamber temperatures of 77 °, 1100 °
and 1500°F to obtain background data. The chamber was then brought

up to ambient pressure under argon preparatory to installing the trans-
former assembly and the two solenoid assemblies from Task 4.
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The'installation procedure for the transformer and solenoids was the
same as that used for the stator. The clean bench was moved up to

the chamber to supply filtered air, and after installation of thermo-

couples the models were moved into the test chamber. Figure IV-30

is a cutaway drawing of the thermal vacuum chamber showing the
transform@r and solenoids installed ia the furnace hot zone. After

brazing of model power leads and thermocouples, lead integrity was
verified and the chamber was closed, evacuated and leak checked.

e. TRANSFORMER TEST CIRCUITRY

Figure IV-31 is a schematic showing the test circuitry for applying

power to the transformer primary winding and loading the secondary

winding. Single-phase power from a 400 cps, 292 volt a-c line-to-neutral

three-phase generator was brought into the test area. A variac and a

1:4 step-up transformer were used to provide a 600 volt a-c source for

the test transformer primary winding. A resistive load bank with

multiple series switches was used as an adjustable load for the secondary

winding.

f. TRANSFORMER TEST PROCEDURE

After electrical continuity of the thermocouples and winding leads had

been checked (transformer and solenoids), the thermal vacuum chamber

was closed up and pumped down using a cryogenic pump. When the

thermocouple gauge reached 7 to 8 microns pressure, the ion pump

was energized. Several titanium sublimation pump bursts were used to

help the pump get started. Thermocouple brazed joints were leak
checked and several required additional sealing to form vacuum tight

joints.

When chamber pressure reached a value of 8 x 10 .7 torr, room temper-
ature base-line static electrical measurements were made on the trans-

former and solenoids, and the transformer secondary load bank was
adjusted. The titanium sublima[ion pump was cycled for an hour and
when the pressure decreased into the 10-8 torr range, a 24 hour chamber

bake-out at 250°C was started. Cold chamber pressure after the bake-
out was 9.3 x 10-10 torr.

In an effort to reduce the base pressure, a second 24 hour bake-out

cycle was initiated. Cold chamber pressure, after this cycle, reached

a value of 4.6 x 10-10 torr, and the chamber was judged ready for the

application of model test loads and furnace heater power to bring the
test models up to test temperature. This event coincided with the

completion of the fourth program quarter.
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Power In
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Single Phase
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Step- Up
Transformer
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Resistive
Test Load Bank

Transformer

FIGURE IV-31. Electrical Test Schematic for1the 1 KVA Rated Transformer
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Bench test electrical measurements covering conductor resistance,
d-c insulation resistance and a-c potential electrical leakage had been

taken prior to installation of the transformer and solenoids in the

chamber. As mentioned previously, these measurements were re-

peated at room temperature under vacuum conditions, and they will

be repeated periodically as the test progresses. Residual gas analysis
scans wi_ll also be taken periodically.

g. DATA EVALUATION

The transformer was designed to be a 1 KVA working model. The

resistive load banks outside the vacuum chamber were adjusted for a

secondary winding load of 29.8 amperes at 29.1 volts. The primary

winding input was 1.84 amps at 600 volts a-c, giving an input power
of 1104 volt-amperes and a load of 867 watts on the secondary.

Figure IV-32 is a plot of thermal vacuum chamber nude ion gauge

pressure against time, from start-up of the ion pump after chamber

evacuation through two 24 hour system bake-outs at 482°F (250°C).
Pressure readings were monitored periodically, but not recorded
during the bake-out cycles. Thus the plot shows dotted lines rather

than the pressure transients that occur during bake-out. The titanium

sublimation pump was cycled several times to help reduce chamber

pressure. The plot covers time up to the end of the reporting period.

Table IV-8 is a tabulation of electrical measurements taken during
bench test and with the transformer installed in the chamber. The de-
crease in winding resistances between the bench and chamber tests

occurred because some lead length was removed to fit the leads to the

power feedthroughs in the vacuum chamber. Insulation resistance im-

proved under vacuum conditions, as was noted in the stator test. There

was also some reduction in leakage current under vacuum condi-
tions.

Figure IV-33 is a sketch showing the location of thermocouples in the
transformer. Eight thermocouples were installed before the trans-

former was put into the thermal vacuum chamber, two of which were lost

during brazing. However, each sensing location has at least one good
thermocouple because dual instrumentation was incorporated in the

buildup in anticipation of possible thermocouple breakage.

Program for the Next Quarter

a) Use transformer load and furnace power to establish a hot spot
temperature of l l00°F.
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TABLE I V- 8. Tabulation of Transformer Electrical Readings

i •

Measurement

Winding Resistance

Primary
Secondary

Insulation Resistance

Primary to Secondary
Primary to Ground

Secondary to Ground

Potential Test

Primary to Secondary
Primary to Ground
Secondary to Ground

Bench Test In Thermal

Room Ambient Chamber
Pressure 6x10- 7 torr

81°F 78°F

Ohms

1.68

0. 0074

Volts d-c
500
500

500

60 cps
Volts a- c

MM_gohm s
5xi_} 2
1.5x10 '_

1.5x104

750
750

750

20

54
48

Ohms

1.58
O. 0055

Volts d-c

500
500

500

60 cps
Volts d-c
75O
750

750

Megohms
-_-xi_6 --

2x10 6

2x10 6

_A

2O

22
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QtY" .
No. Installed De scrzption

i 2 Mid' stack

2 2 Primary ID-Spool

One lost during assy.

3 2 Primary-Secondary windings

4 2 Secondary OD

One lost during assy. i

FIGURE I V-33. Transformer Assembly Showing Thermocouple Locations

and Junction Positions
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b) Develop a residual gas analysis computer matrix to identify

components.

c) Work on a transformer heat flow model within the limits of

temperature instrumentation.

d) Review the transformer design for changes needed in a 1400°F

hot spot model.
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D. TASK 4- SOLENOID

1. Summary of Technical Progress

a)

b)

The manufacture and assembly of two solenoids was completed.

After assembly, the solenoids were given a 43 hour outgassing

bake-out at ll00°F in a liquid-nitrogen-trapped diffusion-pumped
vacuum furnace.

c) Thermal vacuum chamber installation of the solenoids was

completed and chamber pump-down and final bake-out was car-
ried out.

d) Minimum cold chamber pressure attained after system bake-out
was 4. 6 x 10-10 torr.

e) Base line solenoid electrical measurements and chamber residual

gas analysis scans were obtained.

2. Discussion

a°
SOLENOID PHYSICAL AND ELECTRICAL DESIGN AND

CONSTRUCTION

Figure I V-34 is a cutaway view of the solenoid showing the location
of the coil leads and thermocouples. A weight of three pounds is

suspended on the plunger, and when the solenoid is activated, the

weight is lifted approximately 0. 050 inch and held in that position.
The solenoid magnetic housing, cover and plunger are made from

Hiperco 27 alloy forged material. The coil is wound on an alumina

spool which provides insulation between the winding and the plunger

and housing center core. Alumina end plates insulate the sides of
the winding from the. housing and cover. Bearing surfaces for the

plunger consist of an alumina guide rod at one end of the plunger and
an alumina bushing at the opposite end.

Electrically, the solenoid design is rated at 1530 ampere turns with

28 volts d-c applied to the winding at a winding temperature of II00°F.

b. SOLENOID ASSEMBLY

When all shop operations had been completed, the solenoid parts were

cleaned according to the cleaning specifications included in Appendix B

of the third quarterly report. The only material not cleaned was the
Anadur coated nickel-clad silver wire.
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The solenoid windings were formed on a winding arbor which was

mounted on a winding machine, but the machine spindle was turned

by hand and the wire was guided by hand. Eighteen hundred and sixty

turns were put on each coil. Figure IV-35 shows a completed winding

on the winding arbor. Alumina thermocouple tubes can be seen pro-

truding through the top arbor plate. Figure IV-36 shows one winding

on the arbor after the Anadur bake-out cycle. The other winding has

been removed from the arbQr and the alumina end plates have been in-

stalled and held in place with W-839 potting compound. The weight of

the winding as shown is 4. 0 pounds. The fragility of the Anadur con-

ductor insulation after bake-out can be seen by noting the bare spots
on the lead wires.

Figure IV-37 is an exploded view of a solenoid housing, plunger and

weight assembly. The completed winding assembly shown in Figure IV-36

fits over the center post inside the housing, which also serves as a

stop for the plunger. The end of the post has been plasma-arc sprayed

with alumina to prevent "cold welding" between the plunger and post.

Holes for the thermocouple tubes and lead wires can be seen in the

bottom of the housing. The end bell shows the counterbore for the

alumina bushing and metal O-ring. The end plate acts as a stop for

the plunger when the solenoid is not energized. The alumina guide

rod fits the hole in the housing center post and extends beyond it to

provide a bearing guide for a close tolerance hole drilled in the plunger.

The opposite end of the plunger rides in the alumina bushing which acts

as a second bearing for the plunger. The metal O-ring is used as a

semi-flexible ring to load the bushing at low temperatures and com-

pensate for differential thermal expansion at high temperatures. The

end of the plunger which rests against the end plate is coated with

plasma-arc sprayed alumina, again to prevent cold welding with the

end plate. Both the plunger and weight are threaded and a lock nut (not

shown) is added after the weight is installed.

Before the installation, of the winding assembly into the housing, four

axial, strips of W-839 potting compound were added to help keep the wind-

ings in place. After installation, four radial strips of potting com-

pound were added to the alumina winding end plate adjacent to the end

bell to take UP the axial slack with the end bell in place. The end bell

was installed and this portion of the solenoid assembly was given a potting
compound bake-out. Then the plunger and bearing system was installed

and the end plate was added. The last part to be added to the assembly
was the weight.

Figure I V-38 shows a photograph of both solenoids complete, except

for the thermocouples, just before being put through a 43 hour outgassing
bake-out with the transformer.
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FIGURE IV-35. Solenoid Winding on Arbor Before Anadur Bake-Out
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FIGURE I V-36. Solenoid Winding Assembly and Solenoid Winding
on Arbor After Anadur Bake-Out
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Figure I V-3 9 shows a photograph of the solenoids and transformer

in place on the frame which supports them when installed in the
thermal vacuum chamber.

One potential problem occurred with the solenoids as well as with
the stator and transformer. The threads in threaded holes and on

screws and studs went together easily before parts were cleaned.
The cleaning procedures used removed all traces of lubricant and

extreme caution was required when assembling threaded parts to

prevent galling and seizing.

c. SOLENOID TEST CIRCUITRY AND TEST PROCEDURE

Figure I V-40 is a schematic snowing the test circuitry for applying

d-c power to the solenoid windings. Only one d-c power supply was
required, as one solenoid is energized continuously except for periodic

electrical measurements and the other is only actuated periodically

to verify operation. The variable d-c power supply allows the wind-

ing current to be adjusted as required to match the energized solenoid
hot-spot temperature with that of the transformer.

Since the two solenoids were installed in the same thermal vacuum

chamber as the transformer, solenoid test procedure coincides with
the transformer procedure, Section I V. C. 2. f.

d. DATA EVALUATION

The two solenoids were identified as Serial No. 1 and Serial No. 2

for data recognition purposes. The weight of the plunger, weight and
lock nut was 2.98 pounds for each solenoid. Electrical measurements

were made to find the minimum weight pick-up voltage and current and

minimum holding current and voltage for each solenoid.

Serial No. 1 Serial No. 2

Minimum Pick-up
Voltage - d-c

4.9 3.9

Minimum Pick-up 0. 41 0.34
Current- Amps

Minimum Holding
Voltage - d-c

Minimum Holding
Current- Amps

0.9 0.85

0. 065 0. 056
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FIGURE IV-38. Solenoid Assemblies Complete Except for Thermocouples

FiGUV_ I_ _ _ ......_....... a_ _._l_n:_ on Furnace Mountin_ Frame
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Variable
28 Volt

DC Power
Supply

FIGURE I V- 40. Solenoid Circuitry
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The variation in minimum pick-up voltage between the solenoids was
attributed to differences in friction between the plunger and the 99_o
A120 3 bushing and guide rod which serve as bearings.

Winding resistance and insulation resistance measurements were

made on both solenoids at the clean bench and again after installation

in the thermal vacuum chamber. Readings are tabulated below.

Serial No. 1

Room Ambient

Bench Test

79°F

Chamber at
6 x 10-7 torr

78°F

Winding Resistance 12.05 Ohms 13.74 Ohms

Insulation Resistance -

Winding to Ground at
500 V d-c

7 x 104 Megohms 15 x I0 5 Megohms

Serial No. 2

Winding Resistance 11.43 Ohms 13.04 Ohms

Insulation Resistance -

Winding to Ground at
500 V d-c

14 x 104 Megohms 15 x 105 Megohms

Winding resistance for both solenoids increased after chamber instal-

lation and evacuation of the thermal vacuum chamber. Resistance

decreased after installation of the stator and transformer, because
in each case some lead length was removed to fit the leads to the

chamber feedthroughs. The solenoid bench and chamber readings

were made by t_vo different operators using a Wheatstone bridge, and
instrumen[ accuracy and application may account for the difference.

Insulation resistance improved under vacuum conditions as was noted
with the stator and transformer.

Figure IV-41 is a sketch showing the location of thermocouples in
each solenoid. Eight thermocouples were installed in each solenoid

before chamber installation, and of the sixteen, one was lost during
brazing.
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No.

1

2

3

4

Installed

2

2

2

2

JL
Description

Winding ID

Mid-winding

Winding OD- Housing

Housing OD

One lost on S/N2 during assy.

_t_-ttDt_ I V -41 Solenoid Assembly Showing Thermocouplc Locations
and .Junction Positions
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Q Program for the Next Quarter

a} Use the energized solenoid and furnace power to establish a
hot-spot temperature of 1100 °F.

b) Work on a solenoid heat flow model within the limits of tem-

perature instrumentation.

c) Review the solenoid design for changes needed in a 1400°F
hot-spot model.
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